# -*- coding: utf-8 -*-
# BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules
# Copyright (C) 2020-2023, Yoel Cortes-Pena <yoelcortes@gmail.com>
# Yalin Li <mailto.yalin.li@gmail.com>
#
# This module is under the UIUC open-source license. See
# github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt
# for license details.
"""
"""
from __future__ import annotations
import pandas as pd
import numpy as np
import flexsolve as flx
from copy import copy as copy_
from numba import njit
from math import ceil
from warnings import warn
import biosteam as bst
from typing import Optional, Sequence, Collection, TYPE_CHECKING
from ._unit import Unit
from numpy.typing import NDArray
if TYPE_CHECKING: from ._system import System
__all__ = ('TEA',)
cashflow_columns = ('Depreciable capital [MM$]',
'Fixed capital investment [MM$]',
'Working capital [MM$]',
'Depreciation [MM$]',
'Loan [MM$]',
'Loan interest payment [MM$]',
'Loan payment [MM$]',
'Loan principal [MM$]',
'Annual operating cost (excluding depreciation) [MM$]',
'Sales [MM$]',
'Tax [MM$]',
'Incentives [MM$]',
'Taxed earnings [MM$]',
'Forwarded losses [MM$]',
'Net earnings [MM$]',
'Cash flow [MM$]',
'Discount factor',
'Net present value (NPV) [MM$]',
'Cumulative NPV [MM$]')
# %% Depreciation utilities
@njit(cache=True)
def generate_DDB_schedule(years):
val = 1.
arr = np.ones(years)
factor = 2. / years
for i in range(years):
depreciation = val * factor
arr[i] = depreciation
val -= depreciation
return arr
@njit(cache=True)
def generate_SYD_schedule(years):
digit_sum = years * (years + 1.) * 0.5
arr = np.ones(years)
for i in range(years):
arr[i] = (years - i) / digit_sum
return arr
# %% Utilities for TEA calculations
@njit(cache=True)
def NPV_at_IRR(IRR, cashflow_array, duration_array):
"""Return NPV at given IRR and cashflow data."""
return (cashflow_array/(1.+IRR)**duration_array).sum()
@njit(cache=True)
def loan_principal_with_interest(loan, interest):
principal = 0
k = 1. + interest
for i in loan:
principal *= k
principal += i
return principal
@njit(cache=True)
def solve_payment(loan_principal, interest, years):
f = 1 + interest
fn = f ** years
return loan_principal * interest * fn / (fn - 1)
@njit(cache=True)
def taxable_earnings_with_fowarded_losses(taxable_cashflow): # Forwards losses to later years to reduce future taxes
taxed_earnings = taxable_cashflow.copy()
for i in range(taxed_earnings.size - 1):
x = taxed_earnings[i]
if x < 0:
taxed_earnings[i] = 0
taxed_earnings[i + 1] += x
if taxed_earnings[-1] < 0: taxed_earnings[-1] = 0
return taxed_earnings
@njit(cache=True)
def add_replacement_cost_to_cashflow_array(equipment_installed_cost,
equipment_lifetime,
cashflow_array,
venture_years,
start):
N_purchases = ceil(venture_years / equipment_lifetime)
for i in range(1, N_purchases):
cashflow_array[start + i * equipment_lifetime] += equipment_installed_cost
def add_all_replacement_costs_to_cashflow_array(unit_capital_cost, cashflow_array,
venture_years, start,
lang_factor):
equipment_lifetime = unit_capital_cost.equipment_lifetime
if equipment_lifetime:
if lang_factor:
installed_costs = {i: j*lang_factor for i, j in unit_capital_cost.purchase_costs.items()}
else:
installed_costs = unit_capital_cost.installed_costs
if isinstance(equipment_lifetime, int):
add_replacement_cost_to_cashflow_array(sum(installed_costs.values()),
equipment_lifetime,
cashflow_array,
venture_years,
start)
elif isinstance(equipment_lifetime, dict):
for name, installed_cost in installed_costs.items():
lifetime = equipment_lifetime.get(name)
if lifetime:
add_replacement_cost_to_cashflow_array(installed_cost,
lifetime,
cashflow_array,
venture_years,
start)
@njit(cache=True)
def fill_taxable_and_nontaxable_cashflows_without_loans(
D, C, S, C_FC, C_WC, FCI, WC, TDC, VOC, FOC, sales,
startup_time,
startup_VOCfrac,
startup_FOCfrac,
startup_salesfrac,
construction_schedule,
start):
# Cash flow data and parameters
# C_FC: Fixed capital
# C_WC: Working capital
# D: Depreciation
# C: Annual operating cost (excluding depreciation)
# S: Sales
w0 = startup_time
w1 = 1. - w0
C[start] = (w0 * startup_VOCfrac * VOC + w1 * VOC
+ w0 * startup_FOCfrac * FOC + w1 * FOC)
S[start] = w0 * startup_salesfrac * sales + w1 * sales
start1 = start + 1
C[start1:] = VOC + FOC
S[start1:] = sales
C_FC[:start] = FCI * construction_schedule
C_WC[start-1] = WC
C_WC[-1] = -WC
def taxable_and_nontaxable_cashflows(
unit_capital_costs,
D, C, S, C_FC, C_WC, Loan, LP,
FCI, WC, TDC, VOC, FOC, sales,
startup_time,
startup_VOCfrac,
startup_FOCfrac,
startup_salesfrac,
construction_schedule,
finance_interest,
finance_years,
finance_fraction,
start, years,
lang_factor,
accumulate_interest_during_construction,
):
# Cash flow data and parameters
# C_FC: Fixed capital
# C_WC: Working capital
# Loan: Money gained from loan
# LP: Loan payment
# D: Depreciation
# C: Annual operating cost (excluding depreciation)
# S: Sales
fill_taxable_and_nontaxable_cashflows_without_loans(
D, C, S, C_FC, C_WC, FCI, WC, TDC, VOC, FOC, sales,
startup_time,
startup_VOCfrac,
startup_FOCfrac,
startup_salesfrac,
construction_schedule,
start,
)
for i in unit_capital_costs:
add_all_replacement_costs_to_cashflow_array(i, C_FC, years, start, lang_factor)
if finance_interest:
interest = finance_interest
years = finance_years
Loan[:start] = loan = finance_fraction*(C_FC[:start])
if accumulate_interest_during_construction:
loan_principal = loan_principal_with_interest(loan, interest)
else:
loan_principal = loan.sum()
LP[start:start + years] = solve_payment(loan_principal, interest, years)
taxable_cashflow = S - C - D - LP
nontaxable_cashflow = D + Loan - C_FC - C_WC
if not accumulate_interest_during_construction:
nontaxable_cashflow[:start] -= loan * interest
else:
taxable_cashflow = S - C - D
nontaxable_cashflow = D - C_FC - C_WC
return taxable_cashflow, nontaxable_cashflow
def NPV_with_sales(
sales,
taxable_cashflow,
nontaxable_cashflow,
depreciation,
sales_coefficients,
discount_factors,
fill_tax_and_incentives,
):
"""Return NPV with an additional annualized sales."""
taxable_cashflow = taxable_cashflow + sales * sales_coefficients
tax = np.zeros_like(taxable_cashflow, dtype=float)
incentives = tax.copy()
fill_tax_and_incentives(
incentives,
taxable_earnings_with_fowarded_losses(taxable_cashflow),
nontaxable_cashflow, tax, depreciation
)
cashflow = nontaxable_cashflow + taxable_cashflow + incentives - tax
return (cashflow/discount_factors).sum()
# %% Techno-Economic Analysis
_duration_array_cache = {}
[docs]
class TEA:
"""
Abstract TEA class for cash flow analysis.
**Abstract methods**
_DPI(installed_equipment_cost) -> float
Should return the direct permanent investment (DPI) given the
installed equipment cost.
_TDC(DPI) -> float
Should take direct permanent investment (DPI) as an argument
and return total depreciable capital (TDC).
_FCI(TDC) -> float
Should take total depreciable capital (TDC) as an argument and return
fixed capital investment (FCI).
_FOC(FCI) -> float
Should take fixed capital investment (FCI) as an arguments and return
fixed operating cost without depreciation (FOC).
_fill_tax_and_incentives(incentives, taxable_cashflow, nontaxable_cashflow, tax)
Should take two empty 1d arrays and fill them with incentive and tax cash flows.
Additional parameters include taxable_cashflow (sales - costs -
depreciation - payments), and nontaxable_cashflow (depreciation - capital
cost - working capital).
Parameters
----------
system :
Should contain feed and product streams.
IRR :
Internal rate of return (fraction).
duration :
Start and end year of venture (e.g. (2018, 2038)).
depreciation :
Depreciation schedule array or a string with format '{schedule}{years}',
where years is the number of years until the property value is zero
and schedule is one of the following: 'MACRS' (Modified Accelerated Cost Recovery System),
'SL' (straight line), 'DDB' (double declining balance), or
'SYD' (sum-of-the-years' digits). If years is not given, it defaults
to the venture years at run time.
operating_days :
Number of operating days per year.
income_tax :
Combined federal and state income tax rate (fraction).
lang_factor :
Lang factor for getting fixed capital investment
from total purchase cost. If no lang factor, estimate
capital investment using bare module factors.
construction_schedule :
Construction investment fractions per year (e.g. (0.5, 0.5) for 50%
capital investment in the first year and 50% investment in the second).
startup_months :
Startup time in months.
startup_FOCfrac :
Fraction of fixed operating costs incurred during startup.
startup_VOCfrac :
Fraction of variable operating costs incurred during startup.
startup_salesfrac :
Fraction of sales achieved during startup.
WC_over_FCI :
Working capital as a fraction of fixed capital investment.
finance_interest :
Yearly interest of capital cost financing as a fraction.
finance_years :
Number of years the loan is paid for.
finance_fraction :
Fraction of capital cost that needs to be financed.
Warning
-------
When using a Lang factor, a short-cut to get the FCI, we cannot work
backwards to get installed equipment cost. For practical purposes, the
code assumes that installed equipment cost, total depreciable capital
(TDC), and fixed capital investment (FCI) are the same when the Lang
factor is in use. In actuality, the installed equipment cost should be
less than the fixed capital investment.
Examples
--------
:doc:`../tutorial/Techno-economic_analysis`
"""
__slots__ = ('system', 'income_tax', 'WC_over_FCI',
'finance_interest', 'finance_years', 'finance_fraction',
'_construction_schedule', '_startup_time',
'startup_FOCfrac', 'startup_VOCfrac', 'startup_salesfrac',
'_startup_schedule', '_operating_days',
'_duration', '_depreciation_key', '_depreciation',
'_years', '_duration', '_start', 'IRR', '_IRR', '_sales',
'_duration_array_cache', 'accumulate_interest_during_construction')
#: Available depreciation schedules. Defaults include modified
#: accelerated cost recovery system from U.S. IRS publication 946 (MACRS),
#: half-year convention.
depreciation_schedules: dict[tuple(str, int), NDArray[float]] = {
('MACRS', 3): np.array([.3333, .4445, .1481, .0741]),
('MACRS', 5): np.array([.2000, .3200, .1920,
.1152, .1152, .0576]),
('MACRS', 7): np.array([.1429, .2449, .1749,
.1249, .0893, .0892,
.0893, .0446]),
('MACRS', 10): np.array([.1000, .1800, .1440,
.1152, .0922, .0737,
.0655, .0655, .0656,
.0655, .0328]),
('MACRS', 15): np.array([.0500, .0950, .0855,
.0770, .0693, .0623,
.0590, .0590, .0591,
.0590, .0591, .0590,
.0591, .0590, .0591,
.0295]),
('MACRS', 20): np.array([0.03750, 0.07219, 0.06677,
0.06177, 0.05713, 0.05285,
0.04888, 0.04522, 0.04462,
0.04461, 0.04462, 0.04461,
0.04462, 0.04461, 0.04462,
0.04461, 0.04462, 0.04461,
0.04462, 0.04461, 0.02231])
}
#: Investment site factors used to multiply the total permanent
#: investment (TPI), also known as total fixed capital (FCI), to
#: account for locality cost differences based on labor availability,
#: workforce efficiency, local rules, etc.
investment_site_factors: dict[str, float] = {
'U.S. Gulf Coast': 1.0,
'U.S. Southwest': 0.95,
'U.S. Northwest': 1.10,
'U.S. Midwest': 1.15,
'U.S. West Coast': 1.25,
'Western Europe': 1.2,
'Mexico': 0.95,
'Japan': 1.15,
'Pacific Rim': 1.0,
'India': 0.85,
}
def __init_subclass__(cls, isabstract=False):
if isabstract: return
for method in ('_DPI', '_TDC', '_FCI', '_FOC'):
if not hasattr(cls, method):
breakpoint()
raise NotImplementedError(
f"subclass must implement a '{method}' method unless the "
"'isabstract' keyword argument is True"
)
[docs]
def copy(self, system=None):
"""Create a copy."""
new = copy_(self)
if system is not None:
new.system = system
system._TEA = new
return new
def __init__(self, system: System, IRR: float, duration: tuple[int, int],
depreciation: str|NDArray[float], income_tax: float,
operating_days: float, lang_factor: float|None,
construction_schedule: Sequence[float],
startup_months: float, startup_FOCfrac: float, startup_VOCfrac: float,
startup_salesfrac: float, WC_over_FCI: float, finance_interest: float,
finance_years: int, finance_fraction: float,
accumulate_interest_during_construction: bool=False):
#: System being evaluated.
self.system: System = system
self.duration = duration
self.depreciation = depreciation
self.construction_schedule = construction_schedule
self.startup_months = startup_months
self.operating_days = operating_days
#: Internal rate of return (fraction).
self.IRR: float = IRR
#: Combined federal and state income tax rate (fraction).
self.income_tax: float = income_tax
self.lang_factor = lang_factor
#: Fraction of fixed operating costs incurred during startup.
self.startup_FOCfrac: float = startup_FOCfrac
#: Fraction of variable operating costs incurred during startup.
self.startup_VOCfrac: float = startup_VOCfrac
#: Fraction of sales achieved during startup.
self.startup_salesfrac: float = startup_salesfrac
#: Working capital as a fraction of fixed capital investment.
self.WC_over_FCI: float = WC_over_FCI
#: Yearly interest of capital cost financing as a fraction.
self.finance_interest: float = finance_interest
#: Number of years the loan is paid for.
self.finance_years: int = finance_years
#: Fraction of capital cost that needs to be financed.
self.finance_fraction: float = finance_fraction
#: Guess IRR for solve_IRR method
self._IRR: float = IRR
#: Guess cost for solve_price method
self._sales: float = 0
#: Whether to immediately pay interest before operation or to accumulate interest during construction
self.accumulate_interest_during_construction = accumulate_interest_during_construction
#: For convenience, set a TEA attribute for the system
system._TEA = self
def _get_duration(self):
return (self._start, self._years)
def _DPI(self, installed_equipment_cost):
return installed_equipment_cost # For compatibility with Lang factors
def _TDC(self, DPI):
return DPI # For compatibility with Lang factors
def _FCI(self, TDC):
return TDC # For compatibility with Lang factors
@property
def save_report(self):
return self.system.save_report
@property
def units(self) -> set[Unit]:
"""All unit operations with costs."""
return self.system.cost_units
@property
def feeds(self) -> list[Unit]:
"""All feed streams."""
return self.system.feeds
@property
def products(self) -> list[Unit]:
"""All product streams."""
return self.system.products
@property
def operating_days(self) -> float:
"""Number of operating days per year."""
return self.system.operating_hours / 24
@operating_days.setter
def operating_days(self, days):
"""Number of operating days per year."""
self.operating_hours = 24 * days
@property
def operating_hours(self) -> float:
"""Number of operating hours per year."""
return self.system.operating_hours
@operating_hours.setter
def operating_hours(self, hours):
self.system.operating_hours = hours
@property
def lang_factor(self) -> float|None:
"""
Lang factor for getting fixed capital investment from
total purchase cost. If no lang factor, estimate capital investment
using bare module factors.
"""
return self.system.lang_factor
@lang_factor.setter
def lang_factor(self, lang_factor):
self.system.lang_factor = lang_factor
@property
def duration(self) -> tuple[int, int]:
"""Start and end year of venture."""
return self._duration
@duration.setter
def duration(self, duration):
start, end = [int(i) for i in duration]
self._duration = (start, end)
self._years = end - start
@property
def depreciation(self) -> str|NDArray[float]:
"""
Depreciation schedule array or a string with format '{schedule}{years}',
where years is the number of years until the property value is zero
and schedule is one of the following: 'MACRS' (Modified Accelerated Cost Recovery System),
'SL' (straight line), 'DDB' (double declining balance), or
'SYD' (sum-of-the-years' digits). If years is not given, it defaults
to the venture years at run time.
"""
return self._depreciation
@depreciation.setter
def depreciation(self, depreciation):
if isinstance(depreciation, str):
self._depreciation_key = self._depreciation_key_from_name(depreciation)
self._depreciation = depreciation
else:
try:
self._depreciation = np.array(depreciation, dtype=float)
except:
raise TypeError(
f"invalid depreciation type '{type(depreciation).__name__}'; "
"depreciation must be either an array or a string"
) from None
else:
self._depreciation_key = None
@classmethod
def _depreciation_key_from_name(cls, name):
for prefix in ('MACRS', 'SL', 'DDB', 'SYD'):
if name.startswith(prefix):
years = name[len(prefix):]
key = (prefix, int(years) if years else None)
if prefix == 'MACRS' and key not in cls.depreciation_schedules:
raise ValueError(
f"depreciation name {repr(name)} has a valid "
"format, but is not yet implemented in BioSTEAM"
)
return key
raise ValueError(
f"invalid depreciation name {repr(name)}; "
"name must have format '{schedule}{years}', "
"where years is the number of years until the property value is zero "
"and schedule is one of the following: 'MACRS' (Modified Accelerated Cost Recovery System), "
"'SL' (straight line), 'DDB' (double declining balance), or "
"'SYD' (sum-of-the-years' digits)"
)
@classmethod
def _depreciation_array_from_key(cls, key):
depreciation_schedules = cls.depreciation_schedules
if key in depreciation_schedules:
return depreciation_schedules[key]
else:
schedule, years = key
if schedule == 'SL':
arr = np.full(years, 1./years)
elif schedule == 'DDB':
arr = generate_DDB_schedule(years)
elif schedule == 'SYD':
arr = generate_SYD_schedule(years)
else: # pragma: no cover
raise RuntimeError(f'unknown depreciation schedule {repr(schedule)}')
depreciation_schedules[key] = arr
return arr
@property
def construction_schedule(self) -> Sequence[float]:
"""Construction investment fractions per year, starting from year 0.
For example, for 50% capital investment in year 0 and 50% investment
in year 1, use (0.5, 0.5)."""
return self._construction_schedule
@construction_schedule.setter
def construction_schedule(self, schedule):
self._construction_schedule = np.array(schedule, dtype=float)
self._start = len(schedule)
@property
def startup_months(self) -> float:
return self._startup_time * 12.
@startup_months.setter
def startup_months(self, months):
assert months <= 12., "startup time must be less than a year"
self._startup_time = months/12.
@property
def sales(self) -> float:
"""Total sales [USD/yr]."""
return self.system.sales
@property
def material_cost(self) -> float:
"""Total material cost [USD/yr]."""
return self.system.material_cost
@property
def utility_cost(self) -> float:
"""Total utility cost [USD/yr]."""
return self.system.utility_cost
@property
def purchase_cost(self):
"""Total purchase cost [USD]."""
return self.system.purchase_cost
@property
def installed_equipment_cost(self) -> float:
"""Total installed cost [USD]."""
return self.system.installed_equipment_cost
@property
def DPI(self) -> float:
"""Direct permanent investment [USD]."""
return self._DPI(self.installed_equipment_cost)
@property
def TDC(self) -> float:
"""Total depreciable capital [USD]."""
return self._TDC(self.DPI)
@property
def FCI(self) -> float:
"""Fixed capital investment [USD]."""
return self._FCI(self.TDC)
@property
def TCI(self) -> float:
"""Total capital investment [USD]."""
return (1. + self.WC_over_FCI)*self.FCI
@property
def FOC(self) -> float:
"""Fixed operating costs [USD/yr]."""
return self._FOC(self.FCI)
@property
def VOC(self) -> float:
"""Variable operating costs [USD/yr]."""
return self.material_cost + self.utility_cost
@property
def AOC(self) -> float:
"""Annual operating cost excluding depreciation [USD/yr]."""
return self.FOC + self.VOC
@property
def working_capital(self) -> float:
return self.WC_over_FCI * self.FCI
@property
def annual_depreciation(self) -> float:
"""Depreciation [USD/yr] equivalent to TDC dived by the the duration of the venture."""
return self.TDC/(self.duration[1]-self.duration[0])
@property
def ROI(self) -> float:
"""Return on investment [1/yr] without accounting for annualized depreciation."""
return self.net_earnings / self.TCI
@property
def net_earnings(self) -> float:
"""Net earnings without accounting for annualized depreciation."""
net_earnings = self.sales - self.AOC
if net_earnings < 0:
return net_earnings
else:
return (1 - self.income_tax) * net_earnings
@property
def PBP(self) -> float:
"""Pay back period [yr] without accounting for annualized depreciation."""
FCI = self.FCI
net_earnings = self.net_earnings
return FCI/net_earnings
def _get_duration_array(self):
key = start, years = (self._start, self._years)
if key in _duration_array_cache:
duration_array = _duration_array_cache[key]
else:
if len(_duration_array_cache) > 100: _duration_array_cache.clear()
_duration_array_cache[key] = duration_array = np.arange(-start+1, years+1, dtype=float)
return duration_array
def _get_depreciation_array(self):
key = self._depreciation_key
if key is None:
return self._depreciation
else:
schedule, years = self._depreciation_key
if years is None:
years = self._years
key = (schedule, years)
return self._depreciation_array_from_key(key)
def _fill_depreciation_array(self, D, start, years, TDC):
depreciation_array = self._get_depreciation_array()
N_depreciation_years = depreciation_array.size
if N_depreciation_years > years:
raise RuntimeError('depreciation schedule is longer than plant lifetime')
D[start:start + N_depreciation_years] = TDC * depreciation_array
[docs]
def get_cashflow_table(self):
"""Return DataFrame of the cash flow analysis."""
# Cash flow data and parameters
# index: Year since construction until end of venture
# C_D: Depreciable capital
# C_FC: Fixed capital
# C_WC: Working capital
# D: Depreciation
# L: Loan revenue
# LI: Loan interest payment
# LP: Loan payment
# LPl: Loan principal
# C: Annual operating cost (excluding depreciation)
# S: Sales
# T: Tax
# I: Incentives
# TE: Taxed earnings
# FL: Forwarded losses
# NE: Net earnings
# CF: Cash flow
# DF: Discount factor
# NPV: Net present value
# CNPV: Cumulative NPV
TDC = self.TDC
FCI = self._FCI(TDC)
start = self._start
years = self._years
FOC = self._FOC(FCI)
VOC = self.VOC
sales = self.sales
length = start + years
C_D, C_FC, C_WC, D, L, LI, LP, LPl, C, S, T, I, TE, FL, NE, CF, DF, NPV, CNPV = data = np.zeros((19, length))
self._fill_depreciation_array(D, start, years, TDC)
w0 = self._startup_time
w1 = 1. - w0
C[start] = (w0*self.startup_VOCfrac*VOC + w1*VOC
+ w0*self.startup_FOCfrac*FOC + w1*FOC)
S[start] = w0*self.startup_salesfrac*sales + w1*sales
start1 = start + 1
C[start1:] = VOC + FOC
S[start1:] = sales
WC = self.WC_over_FCI * FCI
C_D[:start] = TDC*self._construction_schedule
C_FC[:start] = FCI*self._construction_schedule
C_WC[start-1] = WC
C_WC[-1] = -WC
system = self.system
lang_factor = system.lang_factor
unit_capital_costs = system.unit_capital_costs.values() if isinstance(system, bst.AgileSystem) else system.cost_units
for i in unit_capital_costs: add_all_replacement_costs_to_cashflow_array(i, C_FC, years, start, lang_factor)
if self.finance_interest:
interest = self.finance_interest
years = self.finance_years
end = start + years
L[:start] = loan = self.finance_fraction*(C_FC[:start])
accumulate_interest_during_construction = self.accumulate_interest_during_construction
if accumulate_interest_during_construction:
initial_loan_principal = loan_principal_with_interest(loan, interest)
else:
initial_loan_principal = loan.sum()
LP[start:end] = solve_payment(initial_loan_principal, interest, years)
loan_principal = 0
if accumulate_interest_during_construction:
for i in range(end):
LI[i] = li = (loan_principal + L[i]) * interest
LPl[i] = loan_principal = loan_principal - LP[i] + li + L[i]
else:
for i in range(end):
if i < start:
li = 0
else:
li = (loan_principal + L[i]) * interest
LI[i] = li
LPl[i] = loan_principal = loan_principal - LP[i] + li + L[i]
LI[:start] = L[:start] * interest # Interest still needs to be payed
taxable_cashflow = S - C - D - LP
nontaxable_cashflow = D + L - C_FC - C_WC
if not accumulate_interest_during_construction:
nontaxable_cashflow[:start] -= LI[:start] # Subtract the interest during construction from NPV
else:
taxable_cashflow = S - C - D
nontaxable_cashflow = D - C_FC - C_WC
TE[:] = taxable_earnings_with_fowarded_losses(taxable_cashflow)
FL[1:] = (taxable_cashflow - TE).cumsum()[:-1]
self._fill_tax_and_incentives(
I, TE, nontaxable_cashflow, T, D
)
NE[:] = taxable_cashflow + I - T
CF[:] = NE + nontaxable_cashflow
DF[:] = 1/(1.+self.IRR)**self._get_duration_array()
NPV[:] = CF * DF
CNPV[:] = NPV.cumsum()
DF *= 1e6
data /= 1e6
return pd.DataFrame(data.transpose(),
index=np.arange(self._duration[0]-start, self._duration[1]),
columns=cashflow_columns)
@property
def NPV(self) -> float:
"""Net present value."""
taxable_cashflow, nontaxable_cashflow, depreciation = self._taxable_nontaxable_depreciation_cashflows()
tax = np.zeros_like(taxable_cashflow)
incentives = tax.copy()
self._fill_tax_and_incentives(
incentives,
taxable_earnings_with_fowarded_losses(taxable_cashflow),
nontaxable_cashflow, tax, depreciation
)
cashflow = nontaxable_cashflow + taxable_cashflow + incentives - tax
return NPV_at_IRR(self.IRR, cashflow, self._get_duration_array())
def _AOC(self, FCI):
"""Return AOC at given FCI"""
return self._FOC(FCI) + self.VOC
def _taxable_nontaxable_depreciation_cashflows(self):
"""Return taxable, nontaxable and depreciation cash flows by year as a tuple[1d array, 1d array, 1d array]."""
# Cash flow data and parameters
# C_FC: Fixed capital
# C_WC: Working capital
# Loan: Money gained from loan
# LP: Loan payment
# D: Depreciation
# C: Annual operating cost (excluding depreciation)
# S: Sales
# NE: Net earnings
# CF: Cash flow
TDC = self.TDC
FCI = self._FCI(TDC)
start = self._start
years = self._years
FOC = self._FOC(FCI)
VOC = self.VOC
D, C_FC, C_WC, Loan, LP, C, S = np.zeros((7, start + years))
self._fill_depreciation_array(D, start, years, TDC)
WC = self.WC_over_FCI * FCI
system = self.system
return (
*taxable_and_nontaxable_cashflows(
system.unit_capital_costs if isinstance(system, bst.AgileSystem) else system.cost_units,
D, C, S, C_FC, C_WC, Loan, LP,
FCI, WC, TDC, VOC, FOC, self.sales,
self._startup_time,
self.startup_VOCfrac,
self.startup_FOCfrac,
self.startup_salesfrac,
self._construction_schedule,
self.finance_interest,
self.finance_years,
self.finance_fraction,
start, years,
self.lang_factor,
self.accumulate_interest_during_construction,
),
D
)
def _fill_tax_and_incentives(self, incentives, taxable_cashflow, nontaxable_cashflow, tax, depreciation):
tax[:] = self.income_tax * taxable_cashflow
def _net_earnings_and_nontaxable_cashflow_arrays(self):
taxable_cashflow, nontaxable_cashflow, depreciation = self._taxable_nontaxable_depreciation_cashflows()
size = taxable_cashflow.size
tax = np.zeros(size)
incentives = tax.copy()
self._fill_tax_and_incentives(
incentives,
taxable_earnings_with_fowarded_losses(taxable_cashflow),
nontaxable_cashflow, tax, depreciation
)
net_earnings = taxable_cashflow + incentives - tax
return net_earnings, nontaxable_cashflow
@property
def cashflow_array(self) -> NDArray[float]:
"""Cash flows by year."""
return sum(self._net_earnings_and_nontaxable_cashflow_arrays())
@property
def net_earnings_array(self) -> NDArray[float]:
"""Net earnings by year."""
return self._net_earnings_and_nontaxable_cashflow_arrays()[0]
[docs]
def production_costs(self, products: Sequence[bst.Stream], with_annual_depreciation: Optional[bool]=True):
"""
Return production cost of products [USD/yr].
Parameters
----------
products :
Main products of the system.
with_annual_depreciation:
Whether to add annualized depreciation to the production costs.
Notes
-----
If there is more than one main product, The production cost is
proportionally allocated to each of the main products with respect to
their marketing values. The marketing value of each product is
determined by the annual production multiplied by its selling price.
"""
system = self.system
market_values = np.array([system.get_market_value(i) for i in products])
total_market_value = market_values.sum()
weights = market_values/total_market_value
return weights * self.total_production_cost(products, with_annual_depreciation)
[docs]
def total_production_cost(self, products: Collection[bst.Stream], with_annual_depreciation: Optional[bool]=True):
"""
Return total production cost of products [USD/yr].
Parameters
----------
products :
Main products of the system.
with_annual_depreciation:
Whether to add annualized depreciation to the production costs.
"""
system = self.system
coproduct_sales = self.sales - sum([system.get_market_value(i) for i in products])
if with_annual_depreciation:
TDC = self.TDC
annual_depreciation = TDC/(self.duration[1]-self.duration[0])
AOC = self._AOC(self._FCI(TDC))
return AOC - coproduct_sales + annual_depreciation
else:
return self.AOC - coproduct_sales
[docs]
def solve_IRR(self, financing=True):
"""Return the IRR at the break even point (NPV = 0) through cash flow analysis."""
IRR = self._IRR
if not IRR or np.isnan(IRR) or IRR < 0.: IRR = self.IRR
if not IRR or np.isnan(IRR) or IRR < 0.: IRR = 0.10
if financing:
args = (self.cashflow_array, self._get_duration_array())
IRR = flx.aitken_secant(NPV_at_IRR,
IRR, 1.0001 * IRR + 1e-3, xtol=1e-6, ytol=10.,
maxiter=200, args=args, checkiter=False)
else:
financing_values = self.finance_fraction, self.finance_interest
self.finance_fraction = self.finance_interest = None
try:
args = (self.cashflow_array, self._get_duration_array())
IRR = flx.aitken_secant(NPV_at_IRR,
IRR, 1.0001 * IRR + 1e-3, xtol=1e-6, ytol=10.,
maxiter=200, args=args, checkiter=False)
finally:
self.finance_fraction, self.finance_interest = financing_values
self._IRR = IRR
return IRR
[docs]
def solve_price(self, streams: bst.Stream|Collection[bst.Stream]):
"""
Return the price [USD/kg] of a stream(s) at the break even point (NPV = 0)
through cash flow analysis.
Parameters
----------
streams :
Streams with variable selling price.
"""
if isinstance(streams, bst.Stream): streams = [streams]
system = self.system
price2cost = sum([system._price2cost(i) for i in streams])
if price2cost == 0.: raise ValueError('cannot solve price of empty streams')
try:
sales = self.solve_sales()
except:
original_prices = [i.price for i in streams]
for i in streams: i.price = 0.
sales = self.solve_sales()
current_price = 0.
for i, j in zip(streams, original_prices): i.price = j
else:
current_price = sum([system.get_market_value(i) for i in streams]) / abs(price2cost)
return current_price + sales / price2cost
[docs]
def solve_sales(self):
"""
Return the required additional sales [USD] to reach the breakeven
point (NPV = 0) through cash flow analysis.
"""
discount_factors = (1 + self.IRR)**self._get_duration_array()
sales_coefficients = np.ones_like(discount_factors, dtype=float)
start = self._start
sales_coefficients[:start] = 0
w0 = self._startup_time
sales_coefficients[start] = w0*self.startup_salesfrac + (1.-w0)
taxable_cashflow, nontaxable_cashflow, depreciation = self._taxable_nontaxable_depreciation_cashflows()
if np.isnan(taxable_cashflow).any():
warn('nan encountered in cashflow array; resimulating system', category=RuntimeWarning)
self.system.simulate()
taxable_cashflow, nontaxable_cashflow, depreciation = self._taxable_nontaxable_depreciation_cashflows()
if np.isnan(taxable_cashflow).any():
raise RuntimeError('nan encountered in cashflow array')
args = (taxable_cashflow,
nontaxable_cashflow,
depreciation,
sales_coefficients,
discount_factors,
self._fill_tax_and_incentives)
x0 = self._sales if np.isfinite(self._sales) else 0
f = NPV_with_sales
y0 = f(x0, *args)
x1 = x0 - y0 / self._years # First estimate
try:
sales = flx.aitken_secant(f, x0, x1, xtol=10, ytol=100.,
maxiter=1000, args=args, checkiter=True)
except:
bracket = flx.find_bracket(f, x0, x1, args=args)
sales = flx.IQ_interpolation(f, *bracket, args=args, xtol=10, ytol=100, maxiter=1000, checkiter=False)
self._sales = sales
return sales
def __repr__(self):
return f'{type(self).__name__}({self.system.ID}, ...)'
def _info(self):
return (f'{type(self).__name__}: {self.system}\n'
f'NPV: {self.NPV:,.0f} USD at {self.IRR:.1%} IRR')
[docs]
def show(self):
"""Prints information on unit."""
print(self._info())
_ipython_display_ = show