Source code for biosteam.units.distillation

# -*- coding: utf-8 -*-
# BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules
# Copyright (C) 2020-2023, Yoel Cortes-Pena <yoelcortes@gmail.com>
# 
# This module is under the UIUC open-source license. See 
# github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt
# for license details.
"""
.. contents:: :local:
    
.. autoclass:: biosteam.units.distillation.Distillation
.. autoclass:: biosteam.units.distillation.BinaryDistillation 
.. autoclass:: biosteam.units.distillation.ShortcutColumn
.. autoclass:: biosteam.units.distillation.MESHDistillation
.. autoclass:: biosteam.units.distillation.AdiabaticMultiStageVLEColumn

References
----------
.. [1] J.D. Seader, E.J. Henley, D.K. Roper. (2011)
    Separation Process Principles 3rd Edition. John Wiley & Sons, Inc. 

.. [2] M. Duss, R. Taylor. (2018)
    Predict Distillation Tray Efficiency. AICHE 

.. [3] Green, D. W. Distillation. In Perry’s Chemical Engineers’
    Handbook, 9 ed.; McGraw-Hill Education, 2018.

.. [4] Seider, W. D., Lewin,  D. R., Seader, J. D., Widagdo, S., Gani, R.,
    & Ng, M. K. (2017). Product and Process Design Principles. Wiley.
    Cost Accounting and Capital Cost Estimation (Chapter 16)


"""
import numpy as np
import matplotlib.pyplot as plt
import thermosteam as tmo
import flexsolve as flx
from numba import njit
from thermosteam.exceptions import InfeasibleRegion
from thermosteam.equilibrium import DewPoint, BubblePoint
from math import ceil
from scipy.stats import gmean
from .design_tools.specification_factors import  (
    distillation_column_material_factors,
    tray_material_factor_functions,
    distillation_tray_type_factor,
    material_densities_lb_per_in3)
from . import design_tools as design
from thermosteam import separations
from .. import Unit
from .splitting import MockSplitter
from thermosteam._graphics import vertical_column_graphics
from scipy.optimize import brentq
from warnings import warn
import biosteam as bst
from math import inf, sqrt, exp, pi
from .heat_exchange import HXutility
from ._flash import Flash
from .stage import MultiStageEquilibrium
from thermosteam import separations as sep

__all__ = (
    'Distillation', 
    'BinaryDistillation', 
    'ShortcutColumn',
    'MESHDistillation',
    'RigorousDistillation',
    'AdiabaticMultiStageVLEColumn',
    'Stripper', 'Absorber',
)

# %% Distillation-specific auxliary units

class RefluxDrum(design.PressureVessel, Unit):
    """
    Create a reflux drum for surge capacity and separation of entrained phases
    after the condenser of a distillation coumn.
    
    Parameters
    ----------
    ins : 
        Inlet fluid.
    outs : 
        * [0] Vapor product
        * [1] Liquid product
    vessel_material : str, optional
        Vessel construction material. Defaults to 'Carbon steel'.
    has_glycol_groups=False : bool
        True if glycol groups are present in the mixture.
    has_amine_groups=False : bool
        True if amine groups are present in the mixture.
    vessel_type=None : 'Horizontal' or 'Vertical', optional
        Vessel separation type. If not specified, the vessel type will be chosen
        according to heuristics.
    holdup_time : float, optional
        Time it takes to raise liquid to half full [min]. Defaults to 3 min.
    surge_time : float, optional
        Time it takes to reach from normal to maximum liquied level [min]. 
        Defaults to 2 min.
    has_mist_eliminator : bool
        True if using a mist eliminator pad.
        
    """
    _N_outs = 2
    _design_parameters = Flash._design_parameters
    _vertical_vessel_pressure_diameter_and_length = Flash._vertical_vessel_pressure_diameter_and_length
    _horizontal_vessel_pressure_diameter_and_length = Flash._horizontal_vessel_pressure_diameter_and_length
    _default_vessel_type = Flash._default_vessel_type
    vapor  = Flash.vapor
    liquid  = Flash.liquid
    
    def _init(self, 
             vessel_material='Carbon steel',
             has_glycol_groups=False,
             has_amine_groups=False,
             vessel_type=None,
             holdup_time=3,
             surge_time=2,
             has_mist_eliminator=False
        ):
        #: [str] Vessel construction material
        self.vessel_material = vessel_material
        
        #: [bool] True if glycol groups are present in the mixture
        self.has_glycol_groups = has_glycol_groups
        
        #: [bool] True if amine groups are present in the mixture
        self.has_amine_groups = has_amine_groups
        
        #: [str] 'Horizontal', 'Vertical', or 'Default'
        self.vessel_type = vessel_type
        
        #: [float] Time it takes to raise liquid to half full (min)
        self.holdup_time = holdup_time
        
        #: [float] Time it takes to reach from normal to maximum liquied level (min)
        self.surge_time = surge_time
        
        #: [bool] True if using a mist eliminator pad
        self.has_mist_eliminator = has_mist_eliminator
        
    def _run(self):
        separations.phase_split(*self.ins, self.outs)
        
    def _design(self):
        vap, liq = self.outs
        self.no_vessel_needed = vap.isempty() or liq.isempty()
        if self.no_vessel_needed:
            self.design_results.clear()
        else:
            vessel_type = self.vessel_type
            if vessel_type == 'Vertical': 
                args = self._vertical_vessel_pressure_diameter_and_length()
            elif vessel_type == 'Horizontal': 
                args = self._horizontal_vessel_pressure_diameter_and_length()
            else: raise RuntimeError('unknown vessel type') # pragma: no cover
            self.design_results.update(
                self._vessel_design(*args)
            )
        
    def _cost(self):
        D = self.design_results
        if not self.no_vessel_needed:
            self.baseline_purchase_costs.update(
                self._vessel_purchase_cost(D['Weight'], D['Diameter'], D['Length'])
        )

# %% Abstract distillation column unit operation

[docs] class Distillation(Unit, isabstract=True): r""" Abstract distillation column class. The Murphree efficiency is based on the modified O'Connell correlation [2]_. The diameter is based on tray separation and flooding velocity [1]_ [3]_. Purchase costs are based on correlations compiled by Warren et. al. [4]_. Parameters ---------- ins : Inlet fluids to be mixed into the feed stage. outs : * [0] Distillate * [1] Bottoms product LHK : tuple[str] Light and heavy keys. y_top : float Molar fraction of light key to the light and heavy keys in the distillate. x_bot : float Molar fraction of light key to the light and heavy keys in the bottoms product. Lr : float Recovery of the light key in the distillate. Hr : float Recovery of the heavy key in the bottoms product. k : float Ratio of reflux to minimum reflux. Rmin : float, optional User enforced minimum reflux ratio. If the actual minimum reflux ratio is more than `Rmin`, this enforced value is ignored. Defaults to 0.3. product_specification_format=None : "Composition" or "Recovery" If composition is used, `y_top` and `x_bot` must be specified. If recovery is used, `Lr` and `Hr` must be specified. P=101325 : float Operating pressure [Pa]. vessel_material : str, optional Vessel construction material. Defaults to 'Carbon steel'. tray_material : str, optional Tray construction material. Defaults to 'Carbon steel'. tray_type='Sieve' : 'Sieve', 'Valve', or 'Bubble cap' Tray type. tray_spacing=450 : float Typically between 152 to 915 mm. stage_efficiency=None : User enforced stage efficiency. If None, stage efficiency is calculated by the O'Connell correlation [2]_. velocity_fraction=0.8 : float Fraction of actual velocity to maximum velocity allowable before flooding. foaming_factor=1.0 : float Must be between 0 to 1. open_tray_area=0.1 : float Ratio of open area to active area of a tray. downcomer_area_fraction=None : float Enforced fraction of downcomer area to net (total) area of a tray. If None, estimate ratio based on Oliver's estimation [1]_. is_divided=False : bool True if the stripper and rectifier are two separate columns. """ line = 'Distillation' auxiliary_unit_names = ( 'condenser', 'reflux_drum', 'top_split', 'pump', 'reboiler', 'bottoms_split', 'vacuum_system' ) _auxin_index = { 'reflux_drum': 0, 'top_split': 0, 'reboiler': 1, } _auxout_index = { 'condenser': 0, 'bottoms_split': 1, } _graphics = vertical_column_graphics _ins_size_is_fixed = False _N_ins = 1 _N_outs = 2 _units = {'Minimum reflux': 'Ratio', 'Reflux': 'Ratio', 'Rectifier height': 'ft', 'Rectifier diameter': 'ft', 'Rectifier wall thickness': 'in', 'Rectifier weight': 'lb', 'Stripper height': 'ft', 'Stripper diameter': 'ft', 'Stripper wall thickness': 'in', 'Stripper weight': 'lb', 'Height': 'ft', 'Diameter': 'ft', 'Wall thickness': 'in', 'Weight': 'lb'} _max_agile_design = ( 'Actual stages', 'Rectifier stages', 'Stripper stages', 'Rectifier height', 'Rectifier diameter', 'Rectifier wall thickness', 'Rectifier weight', 'Stripper height', 'Stripper diameter', 'Stripper wall thickness', 'Stripper weight', 'Height', 'Diameter', 'Wall thickness', 'Weight', ) _F_BM_default = {'Rectifier tower': 4.3, 'Stripper tower': 4.3, 'Rectifier trays': 4.3, 'Stripper trays': 4.3, 'Platform and ladders': 1., 'Rectifier platform and ladders': 1., 'Stripper platform and ladders': 1., 'Tower': 4.3, 'Trays': 4.3, 'Vacuum system': 1.} # [dict] Bounds for results _bounds = {'Diameter': (3., 24.), 'Height': (27., 170.), 'Weight': (9000., 2.5e6)} composition_sensitive = False def _init(self, LHK, k, P=101325, Rmin=0.01, Lr=None, Hr=None, y_top=None, x_bot=None, product_specification_format=None, vessel_material='Carbon steel', tray_material='Carbon steel', tray_type='Sieve', tray_spacing=450, stage_efficiency=None, velocity_fraction=0.8, foaming_factor=1.0, open_tray_area=0.1, downcomer_area_fraction=None, is_divided=False, vacuum_system_preference='Liquid-ring pump', condenser_thermo=None, reboiler_thermo=None, partial_condenser=True, weir_height=0.1, ): self.check_LHK = True # Operation specifications self.k = k self.P = P self.Rmin = Rmin self._partial_condenser = partial_condenser self._set_distillation_product_specifications(product_specification_format, x_bot, y_top, Lr, Hr) # Construction specifications self.vessel_material = vessel_material self.tray_type = tray_type self.tray_material = tray_material self.tray_spacing = tray_spacing self.weir_height = weir_height self.stage_efficiency = stage_efficiency self.velocity_fraction = velocity_fraction self.foaming_factor = foaming_factor self.open_tray_area = open_tray_area self.downcomer_area_fraction = downcomer_area_fraction self.is_divided = is_divided self.vacuum_system_preference = vacuum_system_preference self._load_components(partial_condenser, condenser_thermo, reboiler_thermo) self.LHK = LHK def _reset_thermo(self, thermo): super()._reset_thermo(thermo) self.LHK = self._LHK def _load_components(self, partial_condenser, condenser_thermo, reboiler_thermo): # Setup components thermo = self.thermo #: [MultiStream] Overall feed to the distillation column self.mixed_feed = tmo.MultiStream(None, thermo=thermo) #: [HXutility] Condenser. if not condenser_thermo: condenser_thermo = thermo if partial_condenser: self.auxiliary( 'condenser', HXutility, ins='vapor', thermo=condenser_thermo ) self.condenser.outlet.phases = ('g', 'l') self.auxiliary( 'reflux_drum', RefluxDrum, ins=self.condenser-0, outs=(self-0, 'condensate') ) self.condensate = self.reflux_drum-1 else: self.auxiliary( 'condenser', HXutility, ins='vapor', thermo=condenser_thermo ) self.auxiliary( 'top_split', MockSplitter, ins = self.condenser-0, outs=(self-0, 'condensate'), thermo=condenser_thermo ) self.condensate = self.top_split-1 self.condenser.inlet.phase = 'g' if not reboiler_thermo: reboiler_thermo = thermo self.auxiliary('pump', bst.Pump, 'liquid', thermo=reboiler_thermo, ) self.auxiliary('reboiler', HXutility, self.pump-0, thermo=reboiler_thermo ) self.reboiler.outs[0].phases = ('g', 'l') self.auxiliary('bottoms_split', bst.PhaseSplitter, self.reboiler-0, ('boilup', self-1), thermo=reboiler_thermo, ) @property def distillate(self): return self.outs[0] @property def bottoms_product(self): return self.outs[1] @property def product_specification_format(self): return self._product_specification_format @product_specification_format.setter def product_specification_format(self, spec): if spec == 'Composition': self._Lr = self._Hr = None elif spec == 'Recovery': self._y_top = self._x_bot = None else: raise AttributeError("product specification format must be either " "'Composition' or 'Recovery'") self._product_specification_format = spec @property def LHK(self): """tuple[str, str] Light and heavy keys.""" return self._LHK @LHK.setter def LHK(self, LHK): # Set light non-key and heavy non-key indices self._LHK = LHK = tuple(LHK) intermediate_volatile_chemicals = [] chemicals = self.chemicals LHK_chemicals = LK_chemical, HK_chemical = self.chemicals[LHK] Tb_light = LK_chemical.Tb Tb_heavy = HK_chemical.Tb LNK = [] HNK = [] gases = [] solids = [] for chemical in chemicals: ID = chemical.ID Tb = chemical.Tb if not Tb or chemical.locked_state in ('l', 's'): solids.append(ID) elif chemical.locked_state == 'g': gases.append(ID) elif Tb < Tb_light: LNK.append(ID) elif Tb > Tb_heavy: HNK.append(ID) elif chemical not in LHK_chemicals: intermediate_volatile_chemicals.append(chemical.ID) self._LNK = LNK = tuple(LNK) self._HNK = HNK = tuple(HNK) self._gases = gases = tuple(gases) self._solids = solids = tuple(solids) self._intermediate_volatile_chemicals = tuple(intermediate_volatile_chemicals) get_index = self.chemicals.get_index self._LHK_index = get_index(LHK) self._LNK_index = get_index(LNK) self._HNK_index = get_index(HNK) self._gases_index = get_index(gases) self._solids_index = get_index(solids) @property def Rmin(self): """User enforced minimum reflux ratio. If the actual minimum reflux ratio is less than `Rmin`. This enforced value is ignored.""" return self._Rmin @Rmin.setter def Rmin(self, Rmin): self._Rmin = Rmin @property def y_top(self): """Light key composition of at the distillate.""" return self._y_top @y_top.setter def y_top(self, y_top): assert self.product_specification_format == "Composition", ( "product specification format must be 'Composition' " "to set distillate composition") assert 0 < y_top < 1, "light key composition in the distillate must be a fraction" self._y_top = y_top self._y = np.array([y_top, 1-y_top]) @property def x_bot(self): """Light key composition at the bottoms product.""" return self._x_bot @x_bot.setter def x_bot(self, x_bot): assert self.product_specification_format == "Composition", ( "product specification format must be 'Composition' to set bottoms " "product composition") assert 0 < x_bot < 1, "light key composition in the bottoms product must be a fraction" self._x_bot = x_bot @property def Lr(self): """Light key recovery in the distillate.""" return self._Lr @Lr.setter def Lr(self, Lr): assert self.product_specification_format == "Recovery", ( "product specification format must be 'Recovery' " "to set light key recovery") assert 0 < Lr < 1, "light key recovery in the distillate must be a fraction" self._Lr = Lr @property def Hr(self): """Heavy key recovery in the bottoms product.""" return self._Hr @Hr.setter def Hr(self, Hr): if not self.product_specification_format == "Recovery": raise ValueError( "product specification format must be 'Recovery' " "to set heavy key recovery" ) if not 0 < Hr < 1: raise ValueError( "heavy key recovery in the bottoms product must be a fraction" ) self._Hr = Hr @property def weir_height(self): """Weir height as a fraction tray spacing.""" return self._WH @weir_height.setter def weir_height(self, WS): if not 0 < WS < 1: raise ValueError( "weir height must be a fraction" ) self._WH = WS @property def tray_spacing(self): return self._TS @tray_spacing.setter def tray_spacing(self, TS): """Tray spacing (225-600 mm).""" self._TS = TS @property def stage_efficiency(self): """Enforced user defined stage efficiency.""" return self._E_eff @stage_efficiency.setter def stage_efficiency(self, E_eff): self._E_eff = E_eff @property def velocity_fraction(self): """Fraction of actual velocity to maximum velocity allowable before flooding.""" return self._f @velocity_fraction.setter def velocity_fraction(self, f): self._f = f @property def foaming_factor(self): """Foaming factor (0 to 1).""" return self._F_F @foaming_factor.setter def foaming_factor(self, F_F): if not 0 <= F_F <= 1: raise ValueError(f"foaming_factor must be between 0 and 1, ({F_F} given).") self._F_F = F_F @property def open_tray_area(self): """Ratio of open area, A_h, to active area, A_a.""" return self._A_ha @open_tray_area.setter def open_tray_area(self, A_ha): self._A_ha = A_ha @property def downcomer_area_fraction(self): """Enforced fraction of downcomer area to net (total) area. If None, the fraction is estimated based on heuristics.""" return self._A_dn @downcomer_area_fraction.setter def downcomer_area_fraction(self, A_dn): self._A_dn = A_dn @property def tray_type(self): """Default 'Sieve'""" return self._tray_type @tray_type.setter def tray_type(self, tray_type): if tray_type in distillation_tray_type_factor: self._tray_type = tray_type F_D = self.F_D F_D['Trays'] = F_D['Stripper trays'] = F_D['Rectifier trays'] = distillation_tray_type_factor[tray_type] else: raise ValueError("tray type must be one of the following: " f"{', '.join(distillation_tray_type_factor)}") @property def tray_material(self): """Default 'Carbon steel'""" return self._tray_material @tray_material.setter def tray_material(self, tray_material): if tray_material in tray_material_factor_functions: self._tray_material = tray_material self._F_TM_function = tray_material_factor_functions[tray_material] else: raise ValueError("tray material must be one of the following: " f"{', '.join(tray_material_factor_functions)}") @property def vessel_material(self): """Default 'Carbon steel'""" return self._vessel_material @vessel_material.setter def vessel_material(self, vessel_material): if vessel_material in distillation_column_material_factors: self._vessel_material = vessel_material F_M = self.F_M F_M['Rectifier tower'] = F_M['Stripper tower'] = F_M['Tower'] = distillation_column_material_factors[vessel_material] else: raise ValueError("vessel material must be one of the following: " f"{', '.join(distillation_column_material_factors)}") @property def is_divided(self): """[bool] True if the stripper and rectifier are two separate columns.""" return self._is_divided @is_divided.setter def is_divided(self, is_divided): self._is_divided = is_divided self.line = 'Divided Distillation Column' if is_divided else "Distillation Column" def _set_distillation_product_specifications(self, product_specification_format, x_bot, y_top, Lr, Hr): if not product_specification_format: if (x_bot and y_top) and not (Lr or Hr): product_specification_format = 'Composition' elif (Lr and Hr) and not (x_bot or y_top): product_specification_format = 'Recovery' else: raise ValueError("must specify either x_top and y_top, or Lr and Hr") self._product_specification_format = product_specification_format if product_specification_format == 'Composition': self.y_top = y_top self.x_bot = x_bot elif product_specification_format == 'Recovery': self.Lr = Lr self.Hr = Hr else: raise ValueError("product specification format must be either 'Composition' or 'Recovery'") def _get_y_top_and_x_bot(self): if self.product_specification_format == 'Composition': y_top = self.y_top x_bot = self.x_bot else: distillate, bottoms_product = self.outs LHK = self._LHK y_top, _ = distillate.get_normalized_mol(LHK) x_bot, _ = bottoms_product.get_normalized_mol(LHK) return y_top, x_bot def _check_mass_balance(self): distillate, bottoms_product = self.outs LHK = self._LHK LK_distillate, HK_distillate = distillate.imol[LHK] LK_bottoms, HK_bottoms = bottoms_product.imol[LHK] if self.product_specification_format == 'Composition': if LK_distillate < 0. or LK_bottoms < 0.: raise InfeasibleRegion( region='light key molar fraction', msg=('the molar fraction of the light key in the feed must be ' 'between the bottoms product and distillate compositions ' '(i.e. z_bottoms_LK < z_feed_LK < z_distillate_LK)') ) if HK_distillate < 0. or HK_bottoms < 0.: raise InfeasibleRegion( region='heavy key molar fraction', msg=('the molar fraction of the heavy key in the feed must be ' 'between the distillate and bottoms product compositions ' '(i.e. z_distillate_HK < z_feed_HK < z_bottoms_HK)') ) if self.check_LHK: intermediate_chemicals = self._intermediate_volatile_chemicals intermediate_flows = self.mixed_feed.imol[intermediate_chemicals] minflow = min(LK_distillate, HK_bottoms) for flow, chemical in zip(intermediate_flows, intermediate_chemicals): if flow > minflow: raise RuntimeError( "significant intermediate volatile chemical," f"'{chemical}', between light and heavy " f"keys, {', '.join(LHK)}; to ignore this check, " "set `<Unit>.check_LHK = False`") def _run_binary_distillation_mass_balance(self): # Get all important flow rates (both light and heavy keys and non-keys) feed = self.mixed_feed feed.mix_from(self.ins) feed.vle(H=feed.H, P=self.P) mol = feed.mol LHK_index = self._LHK_index LNK_index = self._LNK_index HNK_index = self._HNK_index gases_index = self._gases_index solids_index = self._solids_index intermediate_chemicals = self._intermediate_volatile_chemicals intemediates_index = self.chemicals.get_index(intermediate_chemicals) LHK_mol = mol[LHK_index] LNK_mol = mol[LNK_index] HNK_mol = mol[HNK_index] gases_mol = mol[gases_index] try: solids_mol = mol[solids_index] except: breakpoint() # Mass balance for non-keys distillate, bottoms_product = self.outs distillate.mol[LNK_index] = LNK_mol distillate.mol[gases_index] = gases_mol bottoms_product.mol[HNK_index] = HNK_mol bottoms_product.mol[solids_index] = solids_mol # Mass balance for keys spec = self.product_specification_format if spec == 'Composition': # Use lever rule light, heavy = LHK_mol F_mol_LHK = light + heavy zf = light / F_mol_LHK y_top, y_bot = self._y x_bot = self._x_bot distillate_fraction = (zf - x_bot)/(y_top - x_bot) if distillate_fraction < 1e-6: distillate_fraction = 1e-6 if distillate_fraction > 1 - 1e-6: distillate_fraction = 1 - 1e-6 F_mol_LHK_distillate = F_mol_LHK * distillate_fraction distillate_LHK_mol = F_mol_LHK_distillate * self._y max_flows = (1 - 1e-9) * LHK_mol mask = distillate_LHK_mol > (1 - 1e-9) * max_flows distillate_LHK_mol[mask] = max_flows[mask] elif spec == 'Recovery': distillate_LHK_mol = LHK_mol * [self.Lr, (1 - self.Hr)] else: raise ValueError("invalid specification '{spec}'") distillate.mol[LHK_index] = distillate_LHK_mol bottoms_product.mol[LHK_index] = LHK_mol - distillate_LHK_mol distillate.mol[intemediates_index] = \ bottoms_product.mol[intemediates_index] = mol[intemediates_index] / 2 self._check_mass_balance() def _update_distillate_and_bottoms_temperature(self): distillate, bottoms_product = self.outs condenser_distillate = self.distillate reboiler_bottoms_product = self.reboiler.outs[0]['l'] condenser_distillate.copy_like(distillate) reboiler_bottoms_product.copy_like(bottoms_product) self._boilup_bubble_point = bp = reboiler_bottoms_product.bubble_point_at_P() bottoms_product.T = bp.T if self._partial_condenser: self._condenser_operation = p = condenser_distillate.dew_point_at_P() else: self._condenser_operation = p = condenser_distillate.bubble_point_at_P() self.condenser.T = self.condensate.T = condenser_distillate.T = distillate.T = p.T self.condenser.P = self.condensate.P = condenser_distillate.P = distillate.P = p.P def _setup(self): super()._setup() distillate, bottoms_product = self.outs self.reboiler.ins[0].P = self.condenser.ins[0].P = self.condenser.outs[0].P = self.mixed_feed.P = distillate.P = bottoms_product.P = self.P distillate.phase = 'g' if self._partial_condenser else 'l' bottoms_product.phase = 'l' def get_feed_quality(self): feed = self.mixed_feed data = feed.get_data() H_feed = feed.H try: dp = feed.dew_point_at_P() except: pass else: feed.T = dp.T feed.phase = 'g' H_vap = feed.H try: bp = feed.bubble_point_at_P() except: pass else: feed.T = bp.T feed.phase = 'l' H_liq = feed.H q = (H_vap - H_feed) / (H_vap - H_liq) feed.set_data(data) return q def _run_condenser_and_reboiler(self): feed = self.mixed_feed distillate, bottoms_product = self.outs condenser = self.condenser reboiler = self.reboiler R = self.design_results['Reflux'] # Set condenser conditions self.distillate.mol[:] = distillate.mol self.F_Mol_distillate = F_mol_distillate = distillate.F_mol self.F_Mol_condensate = F_mol_condensate = R * F_mol_distillate p = self._condenser_operation condensate = self.condensate condensate.empty() condensate.imol[p.IDs] = p.x * F_mol_condensate condensate.T = p.T condensate.P = p.P condenser.outs[0].mix_from([condensate, distillate], conserve_phases=True) vap = condenser.ins[0] vap.mol = distillate.mol + condensate.mol T_vap = vap.dew_point_at_P().T if T_vap < p.T: T_vap = p.T + 0.1 vap.T = T_vap vap.P = distillate.P if not self._partial_condenser: self.top_split.ins[0].mix_from(self.top_split.outs) # Set reboiler conditions reboiler.outs[0]['l'].copy_flow(bottoms_product) F_vap_feed = feed.imol['g'].sum() self.F_Mol_boilup = F_mol_boilup = (R+1)*F_mol_distillate - F_vap_feed bp = self._boilup_bubble_point boilup_flow = bp.y * F_mol_boilup boilup = reboiler.outs[0]['g'] boilup.T = bp.T boilup.P = bp.P boilup.imol[bp.IDs] = boilup_flow liq = reboiler.ins[0] liq.mix_from([bottoms_product, boilup], energy_balance=False) liq.phase = 'l' liq_T = liq.bubble_point_at_P().T if liq_T > bp.T: liq_T = bp.T - 0.1 liq.T = liq_T self.pump.ins[0].copy_like(liq) self.pump.simulate() self.bottoms_split.simulate() if self._partial_condenser: self.reflux_drum.simulate() def _simulate_components(self): reboiler = self.reboiler condenser = self.condenser Q_condenser = condenser.outs[0].H - condenser.ins[0].H H_out = self.H_out H_in = self.H_in Q_overall_boiler = H_out - H_in - Q_condenser Q_boiler = reboiler.outs[0].H - reboiler.ins[0].H if Q_boiler < Q_overall_boiler: liquid = reboiler.ins[0] H_out_boiler = reboiler.outs[0].H try: liquid.H = H_out_boiler - Q_overall_boiler except: liquid.phase = 'l' boiler_kwargs = dict(duty=Q_boiler) else: boiler_kwargs = dict(duty=Q_overall_boiler) condenser_kwargs = dict(duty=Q_condenser) else: boiler_kwargs = dict(duty=Q_boiler) condenser_kwargs = dict(duty=Q_condenser) reboiler.simulate( run=False, design_kwargs=boiler_kwargs, ) condenser.simulate( run=False, design_kwargs=condenser_kwargs, ) def _compute_N_stages(self): """Return a tuple with the actual number of stages for the rectifier and the stripper.""" feed = self.mixed_feed vap, liq = self.outs Design = self.design_results R = Design['Reflux'] N_stages = Design['Theoretical stages'] feed_stage = Design['Theoretical feed stage'] E_eff = self.stage_efficiency if E_eff: E_rectifier = E_stripper = E_eff else: # Calculate Murphree Efficiency for rectifying section condensate = self.condensate mu = condensate.get_property('mu', 'mPa*s') alpha_LHK_distillate, alpha_LHK_bottoms = self._get_relative_volatilities_LHK() F_mol_distillate = self.F_Mol_distillate L_Rmol = self.F_Mol_condensate V_Rmol = (R+1) * F_mol_distillate E_rectifier = design.compute_murphree_stage_efficiency(mu, alpha_LHK_distillate, L_Rmol, V_Rmol) # Calculate Murphree Efficiency for stripping section mu = liq.get_property('mu', 'mPa*s') V_Smol = self.F_Mol_boilup L_Smol = R*F_mol_distillate + feed.imol['g'].sum() E_stripper = design.compute_murphree_stage_efficiency(mu, alpha_LHK_bottoms, L_Smol, V_Smol) # Calculate actual number of stages mid_stage = feed_stage - 0.5 N_rectifier = np.ceil(mid_stage/E_rectifier) N_stripper = np.ceil((N_stages-mid_stage)/E_stripper) return N_rectifier, N_stripper def _complete_distillation_column_design(self): distillate, bottoms_product = self.outs Design = self.design_results R = Design['Reflux'] Rstages, Sstages = self._compute_N_stages() is_divided = self.is_divided TS = self._TS ### Get diameter of rectifying section based on top plate ### condensate = self.condensate rho_L = condensate.rho sigma = condensate.get_property('sigma', 'dyn/cm') L = condensate.F_mass V = L*(R+1)/R vap = self.condenser.ins[0] V_vol = vap.get_total_flow('m^3/s') rho_V = vap.rho F_LV = design.compute_flow_parameter(L, V, rho_V, rho_L) C_sbf = design.compute_max_capacity_parameter(TS, F_LV) F_F = self._F_F A_ha = self._A_ha U_f = design.compute_max_vapor_velocity(C_sbf, sigma, rho_L, rho_V, F_F, A_ha) A_dn = self._A_dn if A_dn is None: A_dn = design.compute_downcomer_area_fraction(F_LV) f = self._f R_diameter = design.compute_tower_diameter(V_vol, U_f, f, A_dn) * 3.28 ### Get diameter of stripping section based on feed plate ### rho_L = bottoms_product.rho boilup = self.reboiler.outs[0]['g'] V = boilup.F_mass V_vol = boilup.get_total_flow('m^3/s') rho_V = boilup.rho L = bottoms_product.F_mass # To get liquid going down F_LV = design.compute_flow_parameter(L, V, rho_V, rho_L) C_sbf = design.compute_max_capacity_parameter(TS, F_LV) sigma = condensate.get_property('sigma', 'dyn/cm') U_f = design.compute_max_vapor_velocity(C_sbf, sigma, rho_L, rho_V, F_F, A_ha) A_dn = self._A_dn if A_dn is None: A_dn = design.compute_downcomer_area_fraction(F_LV) S_diameter = design.compute_tower_diameter(V_vol, U_f, f, A_dn) * 3.28 Po = self.P * 0.000145078 # to psi rho_M = material_densities_lb_per_in3[self.vessel_material] if Po < 14.68: warn('vacuum pressure vessel ASME codes not implemented yet; ' 'wall thickness may be inaccurate and stiffening rings may be ' 'required', category=RuntimeWarning) if is_divided: Design['Rectifier stages'] = Rstages Design['Stripper stages'] = Sstages Design['Rectifier height'] = H_R = design.compute_tower_height(TS, Rstages-1) * 3.28 Design['Stripper height'] = H_S = design.compute_tower_height(TS, Sstages-1) * 3.28 Design['Rectifier diameter'] = R_diameter Design['Stripper diameter'] = S_diameter Design['Rectifier wall thickness'] = tv = design.compute_tower_wall_thickness(Po, R_diameter, H_R) Design['Stripper wall thickness'] = tv = design.compute_tower_wall_thickness(Po, S_diameter, H_S) Design['Rectifier weight'] = design.compute_tower_weight(R_diameter, H_R, tv, rho_M) Design['Stripper weight'] = design.compute_tower_weight(S_diameter, H_S, tv, rho_M) else: Design['Actual stages'] = Rstages + Sstages Design['Height'] = H = design.compute_tower_height(TS, Rstages+Sstages-2) * 3.28 Design['Diameter'] = Di = max((R_diameter, S_diameter)) Design['Wall thickness'] = tv = design.compute_tower_wall_thickness(Po, Di, H) Design['Weight'] = design.compute_tower_weight(Di, H, tv, rho_M) self._simulate_components() def _cost_vacuum(self, dimensions): P = self.P if not P or P > 1e5: self.vacuum_system = None else: volume = 0. for length, diameter in dimensions: R = diameter * 0.5 volume += 0.02832 * np.pi * length * R * R # m3 self.vacuum_system = bst.VacuumSystem( self, self.vacuum_system_preference, vessel_volume=volume, ) def _cost(self): Design = self.design_results Cost = self.baseline_purchase_costs Cost.clear() # Prevent having previous results if `is_divided` changed F_M = self.F_M if self.is_divided: # Number of trays assuming a partial condenser N_RT = Design['Rectifier stages'] - 1. Di_R = Design['Rectifier diameter'] Cost['Rectifier trays'] = design.compute_purchase_cost_of_trays(N_RT, Di_R) F_M['Rectifier trays'] = self._F_TM_function(Di_R) N_ST = Design['Stripper stages'] - 1. Di_S = Design['Stripper diameter'] Cost['Stripper trays'] = design.compute_purchase_cost_of_trays(N_ST, Di_S) F_M['Stripper trays'] = self._F_TM_function(Di_S) # Cost vessel assuming T < 800 F W_R = Design['Rectifier weight'] # in lb H_R = Design['Rectifier height'] # in ft Cost['Rectifier tower'] = design.compute_empty_tower_cost(W_R) Cost['Stripper platform and ladders'] = design.compute_plaform_ladder_cost(Di_R, H_R) W_S = Design['Stripper weight'] # in lb H_S = Design['Stripper height'] # in ft Cost['Stripper tower'] = design.compute_empty_tower_cost(W_S) Cost['Rectifier platform and ladders'] = design.compute_plaform_ladder_cost(Di_S, H_S) dimensions = [(H_R, Di_R), (H_S, Di_S)] else: # Cost trays assuming a partial condenser N_T = Design['Actual stages'] - 1. Di = Design['Diameter'] F_M['Trays'] = self._F_TM_function(Di) Cost['Trays'] = design.compute_purchase_cost_of_trays(N_T, Di) # Cost vessel assuming T < 800 F W = Design['Weight'] # in lb H = Design['Height'] # in ft Cost['Tower'] = design.compute_empty_tower_cost(W) Cost['Platform and ladders'] = design.compute_plaform_ladder_cost(Di, H) dimensions = [(H, Di)] self._cost_vacuum(dimensions) def _update_equilibrium_variables(self): top, bottom = self.outs top = top.mol.to_array() bottom = bottom.mol.to_array() bottom_dummy = bottom.copy() mask = bottom == 0 bottom_dummy[mask] = 1e-16 self.S = top / bottom_dummy self.S[mask] = inf
# %% McCabe-Thiele distillation model utilities def compute_stages_McCabeThiele(P, operating_line, x_stages, y_stages, T_stages, x_limit, solve_Ty): """ Use the McCabe-Thiele method to find the specifications at every stage of the operating line before the maximum liquid molar fraction, `x_limit`. Append the light key liquid molar fraction, light key vapor molar fraction, and stage temperatures to `x_stages`, `y_stages` and `T_stages` respectively. Parameters ---------- P : float Pressure [Pa]. operating_line : function Should return the liquid molar fraction of the light key given its vapor molar fraction. x_stages : list Liquid molar compositions at each stage. Last element should be the starting point for the next stage. y_stages : list Vapor molar compositions at each stage. Last element should be the starting point for the next stage. x_limit : float Maximum value of liquid composition before algorithm stops. T_stages : list Temperature at each stage. solve_Ty : function Should return T and y given x. """ i = 0 yi = y_stages[-1] xi = x_stages[-1] while xi < x_limit: if i > 100: raise RuntimeError('cannot meet specifications! stages > 100') i += 1 # Go Up x = np.array((xi, 1-xi)) T, y = solve_Ty(x, P) yi = y[0] y_stages.append(yi) T_stages.append(T) # Go Right xi = operating_line(yi) if xi > x_limit: xi = x_limit x_stages.append(xi) # %% McCabe-Thiele distillation column unit operation
[docs] class BinaryDistillation(Distillation, new_graphics=False): r""" Create a binary distillation column that assumes all light and heavy non keys separate to the top and bottoms product respectively. McCabe-Thiele analysis is used to find both the number of stages and the reflux ratio given a ratio of actual reflux to minimum reflux [1]_. This assumption is good for both binary distillation of highly polar compounds and ternary distillation assuming complete separation of light non-keys and heavy non-keys with large differences in boiling points. Preliminary analysis showed that the theoretical number of stages using this method on Methanol/Glycerol/Water systems is off by less than +-1 stage. Other methods, such as the Fenske-Underwood-Gilliland method, are more suitable for hydrocarbons. The Murphree efficiency is based on the modified O'Connell correlation [2]_. The diameter is based on tray separation and flooding velocity [1]_ [3]_. Purchase costs are based on correlations compiled by Warren et. al. [4]_. Parameters ---------- ins : Inlet fluids to be mixed into the feed stage. outs : * [0] Distillate * [1] Bottoms product LHK : tuple[str] Light and heavy keys. y_top : float Molar fraction of light key to the light and heavy keys in the distillate. x_bot : float Molar fraction of light key to the light and heavy keys in the bottoms product. Lr : float Recovery of the light key in the distillate. Hr : float Recovery of the heavy key in the bottoms product. k : float Ratio of reflux to minimum reflux. Rmin : float, optional User enforced minimum reflux ratio. If the actual minimum reflux ratio is more than `Rmin`, this enforced value is ignored. Defaults to 0.3. product_specification_format=None : "Composition" or "Recovery" If composition is used, `y_top` and `x_bot` must be specified. If recovery is used, `Lr` and `Hr` must be specified. P=101325 : float Operating pressure [Pa]. vessel_material : str, optional Vessel construction material. Defaults to 'Carbon steel'. tray_material : str, optional Tray construction material. Defaults to 'Carbon steel'. tray_type='Sieve' : 'Sieve', 'Valve', or 'Bubble cap' Tray type. tray_spacing=450 : float Typically between 152 to 915 mm. stage_efficiency=None : User enforced stage efficiency. If None, stage efficiency is calculated by the O'Connell correlation [2]_. velocity_fraction=0.8 : float Fraction of actual velocity to maximum velocity allowable before flooding. foaming_factor=1.0 : float Must be between 0 to 1. open_tray_area=0.1 : float Fraction of open area to active area of a tray. downcomer_area_fraction=None : float Enforced fraction of downcomer area to net (total) area of a tray. If None, estimate ratio based on Oliver's estimation [1]_. is_divided=False : bool True if the stripper and rectifier are two separate columns. Examples -------- Binary distillation assuming 100% separation on non-keys: >>> from biosteam.units import BinaryDistillation >>> from biosteam import Stream, settings >>> settings.set_thermo(['Water', 'Methanol', 'Glycerol'], cache=True) >>> feed = Stream('feed', flow=(80, 100, 25)) >>> bp = feed.bubble_point_at_P() >>> feed.T = bp.T # Feed at bubble point T >>> D1 = BinaryDistillation('D1', ins=feed, ... outs=('distillate', 'bottoms_product'), ... LHK=('Methanol', 'Water'), ... y_top=0.99, x_bot=0.01, k=2, ... is_divided=True) >>> D1.simulate() >>> # See all results >>> D1.show(T='degC', P='atm', composition=True) BinaryDistillation: D1 ins... [0] feed phase: 'l', T: 76.082 degC, P: 1 atm composition (%): Water 39 Methanol 48.8 Glycerol 12.2 -------- 205 kmol/hr outs... [0] distillate phase: 'g', T: 64.854 degC, P: 1 atm composition (%): Water 1 Methanol 99 -------- 100 kmol/hr [1] bottoms_product phase: 'l', T: 100.02 degC, P: 1 atm composition (%): Water 75.4 Methanol 0.761 Glycerol 23.9 -------- 105 kmol/hr >>> D1.results() Divided Distillation Column Units D1 Electricity Power kW 0.644 Cost USD/hr 0.0504 Cooling water Duty kJ/hr -4.88e+06 Flow kmol/hr 3.33e+03 Cost USD/hr 1.63 Low pressure steam Duty kJ/hr 1.02e+07 Flow kmol/hr 263 Cost USD/hr 62.6 Design Theoretical feed stage 9 Theoretical stages 13 Minimum reflux Ratio 0.687 Reflux Ratio 1.37 Rectifier stages 15 Stripper stages 13 Rectifier height ft 34.7 Stripper height ft 31.7 Rectifier diameter ft 3.93 Stripper diameter ft 3.19 Rectifier wall thickness in 0.312 Stripper wall thickness in 0.312 Rectifier weight lb 6e+03 Stripper weight lb 4.43e+03 Purchase cost Rectifier trays USD 1.5e+04 Stripper trays USD 1.25e+04 Rectifier tower USD 4.56e+04 Stripper platform and ladders USD 1.39e+04 Stripper tower USD 3.83e+04 Rectifier platform and ladders USD 1.14e+04 Condenser - Floating head USD 3.33e+04 Reflux drum - Horizontal pressur... USD 1.02e+04 Reflux drum - Platform and ladders USD 3.02e+03 Pump - Pump USD 4.37e+03 Pump - Motor USD 368 Reboiler - Floating head USD 2.71e+04 Total purchase cost USD 2.15e+05 Utility cost USD/hr 64.3 Binary distillation with full-condenser >>> from biosteam.units import BinaryDistillation >>> from biosteam import Stream, settings >>> settings.set_thermo(['Water', 'Methanol', 'Glycerol'], cache=True) >>> feed = Stream('feed', flow=(80, 100, 25)) >>> bp = feed.bubble_point_at_P() >>> feed.T = bp.T # Feed at bubble point T >>> D1 = BinaryDistillation('D1', ins=feed, ... outs=('distillate', 'bottoms_product'), ... LHK=('Methanol', 'Water'), ... y_top=0.99, x_bot=0.01, k=2, ... partial_condenser=False, ... is_divided=False) >>> D1.simulate() >>> # See all results >>> D1.results() # doctest: +SKIP Distillation Column Units D1 Electricity Power kW 2.48 Cost USD/hr 0.194 Cooling water Duty kJ/hr -8.41e+06 Flow kmol/hr 5.74e+03 Cost USD/hr 2.8 Low pressure steam Duty kJ/hr 1.02e+07 Flow kmol/hr 263 Cost USD/hr 62.6 Design Theoretical feed stage 9 Theoretical stages 13 Minimum reflux Ratio 0.687 Reflux Ratio 1.37 Actual stages 28 Height ft 52.4 Diameter ft 3.97 Wall thickness in 0.312 Weight lb 8.9e+03 Purchase cost Trays USD 2.28e+04 Tower USD 5.76e+04 Platform and ladders USD 1.95e+04 Condenser - Floating head USD 4.35e+04 Pump - Pump USD 4.32e+03 Pump - Motor USD 441 Reboiler - Floating head USD 2.71e+04 Total purchase cost USD 1.75e+05 Utility cost USD/hr 65.6 """ _cache_tolerance = np.array([50., 1e-5, 1e-6, 1e-6, 1e-2, 1e-6], float) _energy_variable = None def _run(self): self._run_binary_distillation_mass_balance() self._update_distillate_and_bottoms_temperature() if self.system and self.system.algorithm == 'Phenomena oriented': self._update_equilibrium_variables() def reset_cache(self, isdynamic=None): self._McCabeThiele_args = np.zeros(6) super().reset_cache() def _run_McCabeThiele(self): distillate, bottoms = self.outs chemicals = self.chemicals LHK = self._LHK LHK_index = chemicals.get_index(LHK) # Feed light key mol fraction feed = self.mixed_feed liq_mol = feed.imol['l'] vap_mol = feed.imol['g'] LHK_mol = liq_mol[LHK_index] + vap_mol[LHK_index] F_mol_LHK = LHK_mol.sum() zf = LHK_mol[0]/F_mol_LHK q = self.get_feed_quality() # Main arguments P = self.P k = self.k y_top, x_bot = self._get_y_top_and_x_bot() # Cache args = np.array([P, k, y_top, x_bot, q, zf], float) if hasattr(self, '_McCabeThiele_args') and (abs(self._McCabeThiele_args - args) < self._cache_tolerance).all(): return self._McCabeThiele_args = args # Get R_min and the q_line if abs(q - 1) < 1e-4: q = 1 - 1e-4 q_line = lambda x: q*x/(q-1) - zf/(q-1) self._q_line_args = dict(q=q, zf=zf) solve_Ty = bottoms.get_bubble_point(LHK).solve_Ty Rmin_intersection = lambda x: q_line(x) - solve_Ty(np.array((x, 1-x)), P)[1][0] x_Rmin = brentq(Rmin_intersection, 0, 1) y_Rmin = q_line(x_Rmin) m = (y_Rmin-y_top)/(x_Rmin-y_top) Rmin = m/(1-m) if Rmin < self._Rmin: Rmin = self._Rmin R = k * Rmin # Rectifying section: Inntersects q_line with slope given by R/(R+1) m1 = R/(R+1) b1 = y_top-m1*y_top rs = lambda y: (y - b1)/m1 # -> x # y_m is the solution to lambda y: y - q_line(rs(y)) self._y_m = y_m = (q*b1 + m1*zf)/(q - m1*(q-1)) self._x_m = x_m = rs(y_m) # Stripping section: Intersects Rectifying section and q_line and beggins at bottoms liquid composition m2 = (x_bot-y_m)/(x_bot-x_m) b2 = y_m-m2*x_m ss = lambda y: (y-b2)/m2 # -> x # Data for staircase self._x_stages = x_stages = [x_bot] self._y_stages = y_stages = [x_bot] self._T_stages = T_stages = [] error = [None] try: compute_stages_McCabeThiele(P, ss, x_stages, y_stages, T_stages, x_m, solve_Ty) except RuntimeError as e: error[0] = e yi = y_stages[-1] xi = rs(yi) x_stages[-1] = xi if xi < 1 else 0.99999 try: compute_stages_McCabeThiele(P, rs, x_stages, y_stages, T_stages, y_top, solve_Ty) except RuntimeError as e: error[0] = e # Find feed stage N_stages = len(x_stages) feed_stage = ceil(N_stages/2) for i in range(len(y_stages)-1): if y_stages[i] < y_m < y_stages[i+1]: feed_stage = i+1 # Results Design = self.design_results if error[0] is None: Design['Theoretical feed stage'] = N_stages - feed_stage Design['Theoretical stages'] = N_stages else: Design['Theoretical feed stage'] = '?' Design['Theoretical stages'] = '100+' Design['Minimum reflux'] = Rmin Design['Reflux'] = R y_stages = np.array(y_stages) x_stages = np.array(x_stages) mask = (x_stages >= 0) & (x_stages <= 1) & (y_stages >= 0) & (y_stages <= 1) self._y_stages = y_stages[mask] self._x_stages = x_stages[mask] self._T_stages = np.array(T_stages)[mask[:len(T_stages)]] raise error[0] from None Design['Minimum reflux'] = Rmin Design['Reflux'] = R def _get_relative_volatilities_LHK(self): x_stages = self._x_stages y_stages = self._y_stages K_light = y_stages[-1]/x_stages[-1] K_heavy = (1-y_stages[-1])/(1-x_stages[-1]) alpha_LHK_distillate = K_light/K_heavy K_light = y_stages[0]/x_stages[0] K_heavy = (1-y_stages[0])/(1-x_stages[0] ) alpha_LHK_bottoms = K_light/K_heavy return alpha_LHK_distillate, alpha_LHK_bottoms def _design(self): self._run_McCabeThiele() self._run_condenser_and_reboiler() self._complete_distillation_column_design() def _plot_stages(self): """Plot stages, graphical aid line, and equilibrium curve. The plot does not include operating lines nor a legend.""" vap, liq = self.outs if not hasattr(self, '_x_stages'): raise RuntimeError('cannot plot stages without running McCabe Thiele binary distillation') x_stages = self._x_stages y_stages = self._y_stages LHK = self.LHK LK = self.LHK[0] P = self.P # Equilibrium data x_eq = np.linspace(0, 1, 100) y_eq = np.zeros(100) T = np.zeros(100) n = 0 bp = vap.get_bubble_point(IDs=LHK) solve_Ty = bp.solve_Ty for xi in x_eq: T[n], y = solve_Ty(np.array([xi, 1-xi]), P) y_eq[n] = y[0] n += 1 # Set-up graph plt.figure() plt.xticks(np.arange(0, 1.1, 0.1), fontsize=12) plt.yticks(fontsize=12) plt.xlabel('x (' + LK + ')', fontsize=16) plt.ylabel('y (' + LK + ')', fontsize=16) plt.xlim([0, 1]) # Plot stages x_stairs = [] for x in x_stages: x_stairs.append(x) x_stairs.append(x) y_stairs = [] for y in y_stages: y_stairs.append(y) y_stairs.append(y) try: x_stairs.pop(-1) x_stairs.insert(0, y_stairs[0]) except: pass plt.plot(x_stairs, y_stairs, '--') # Graphical aid line plt.plot([0, 1], [0, 1]) # Vapor equilibrium graph plt.plot(x_eq, y_eq, lw=2) def plot_stages(self): """Plot the McCabe Thiele Diagram.""" # Plot stages, graphical aid and equilibrium curve self._plot_stages() vap, liq = self.outs Design = self.design_results if not hasattr(self, '_x_stages'): self._design() q_args = self._q_line_args zf = q_args['zf'] q = q_args['q'] q_line = lambda x: q*x/(q-1) - zf/(q-1) y_top, x_bot = self._get_y_top_and_x_bot() stages = Design['Theoretical stages'] Rmin = Design['Minimum reflux'] R = Design['Reflux'] feed_stage = Design['Theoretical feed stage'] # q_line intersect2 = lambda x: x - q_line(x) x_m2 = brentq(intersect2, 0, 1) # Graph q-line, Rectifying and Stripping section plt.plot([self._x_m, x_m2], [self._y_m, x_m2]) plt.plot([self._x_m, y_top], [self._y_m, y_top]) plt.plot([x_bot, self._x_m], [x_bot, self._y_m]) plt.legend([f'Stages: {stages}, Feed: {feed_stage}', 'Graphical aid', 'eq-line', 'q-line', 'ROL', 'SOL'], fontsize=12) plt.title(f'McCabe Thiele Diagram (Rmin = {Rmin:.2f}, R = {R:.2f})') plt.show() return plt # def _update_net_flow_parameters(self): # top, bottom = self.outs # phi = sep.partition( # self.ins[0], top, bottom, top.chemicals.IDs, self.K, 0.5, # None, None, True, # ) # if phi == 1: # B = np.inf # else: # B = phi / (1 - phi) # self.B = B # if self.product_specification_format == 'Recovery': # LK, HK = self._LHK_index # Lr = self._Lr # Hr = self._Hr # self.K[LK] = Lr / ((1 - Lr) * B) # self.K[HK] = (1 - Hr) / (Hr * B) # def _update_composition_parameters(self): # pass def _create_material_balance_equations(self, composition_sensitive): top, bottom = self.outs S = self.S.copy() fresh_inlets, process_inlets, equations = self._begin_equations(composition_sensitive) top, bottom, *_ = self.outs ones = np.ones(self.chemicals.size) minus_ones = -ones zeros = np.zeros(self.chemicals.size) # Overall flows eq_overall = {} for i in self.outs: eq_overall[i] = ones for i in process_inlets: eq_overall[i] = minus_ones equations.append( (eq_overall, sum([i.mol for i in fresh_inlets], zeros)) ) # Top to bottom flows eq_outs = {} infmask = ~np.isfinite(S) S[infmask] = 1 eq_outs[top] = coef = -ones coef[infmask] = 0 eq_outs[bottom] = S equations.append( (eq_outs, zeros) ) return equations def _get_energy_departure_coefficient(self, stream): return None def _create_energy_departure_equations(self): return [] def _update_nonlinearities(self): outs = self.outs data = [i.get_data() for i in outs] self._run_binary_distillation_mass_balance() for i, j in zip(outs, data): i.set_data(j)
# %% Fenske-Underwook-Gilliland distillation model utilities @njit(cache=True) def geometric_mean(a, b): return (a * b) ** 0.5 @njit(cache=True) def compute_mean_volatilities_relative_to_heavy_key(K_distillate, K_bottoms, HK_index): alpha_distillate = K_distillate / K_distillate[HK_index] alpha_bottoms = K_bottoms / K_bottoms[HK_index] alpha_mean = geometric_mean(alpha_distillate, alpha_bottoms) return alpha_mean @njit(cache=True) def compute_partition_coefficients(y, x): x[x <= 1e-16] = 1e-16 return y / x @njit(cache=True) def compute_distillate_recoveries_Hengsteback_and_Gaddes(d_Lr, b_Hr, alpha_mean, LHK_index): LK_index = LHK_index[0] alpha_LK = alpha_mean[LK_index] A_dummy = (1. - b_Hr) / b_Hr A = np.log10(A_dummy) B = np.log10(d_Lr / (1. - d_Lr) / A_dummy) / np.log10(alpha_LK) alpha_mean[alpha_mean < 1e-9] = 1e-9 dummy = 10.**A * alpha_mean**B dummy[dummy > 1e16] = 1e16 distillate_recoveries = dummy / (1. + dummy) distillate_recoveries[LHK_index] = [d_Lr, 1. - b_Hr] distillate_recoveries[distillate_recoveries < 1e-12] = 0. return distillate_recoveries @njit(cache=True) def compute_minimum_theoretical_stages_Fenske(LHK_distillate, LHK_bottoms, alpha_LK): LK, HK = LHK_distillate LHK_ratio_distillate = LK / HK LK, HK = LHK_bottoms HLK_ratio_bottoms = HK / LK N = np.log10(LHK_ratio_distillate * HLK_ratio_bottoms) / np.log10(alpha_LK) return N @njit(cache=True) def objective_function_Underwood_constant(theta, q, z_f, alpha_mean): return (alpha_mean * z_f / (alpha_mean - theta)).sum() - 1.0 + q @njit(cache=True) def compute_minimum_reflux_ratio_Underwood(alpha_mean, z_d, theta): Rm = (alpha_mean * z_d / (alpha_mean - theta)).sum() - 1.0 return Rm @njit(cache=True) def compute_theoretical_stages_Gilliland(Nm, Rm, R): X = (R - Rm) / (R + 1.) Y = 1. - np.exp((1. + 54.4*X) / (11. + 117.2*X) * (X - 1.) / X**0.5) N = (Y + Nm) / (1. - Y) return np.ceil(N) @njit(cache=True) def compute_feed_stage_Kirkbride(N, B, D, feed_HK_over_LK, z_LK_bottoms, z_HK_distillate): m_over_p = (B/D * feed_HK_over_LK * (z_LK_bottoms / z_HK_distillate)**2.) ** 0.206 return np.floor(N / (m_over_p + 1.)) # %% Fenske-Underwook-Gilliland distillation column unit operation
[docs] class ShortcutColumn(Distillation, new_graphics=False): r""" Create a multicomponent distillation column that relies on the Fenske-Underwood-Gilliland method to solve for the theoretical design of the distillation column and the separation of non-keys [1]_.The Murphree efficiency (i.e. column efficiency) is based on the modified O'Connell correlation [2]_. The diameter is based on tray separation and flooding velocity [1]_ [3]_. Purchase costs are based on correlations compiled by Warren et. al. [4]_. Parameters ---------- ins : Inlet fluids to be mixed into the feed stage. outs : * [0] Distillate * [1] Bottoms product LHK : tuple[str] Light and heavy keys. y_top : float Molar fraction of light key to the light and heavy keys in the distillate. x_bot : float Molar fraction of light key to the light and heavy keys in the bottoms product. Lr : float Recovery of the light key in the distillate. Hr : float Recovery of the heavy key in the bottoms product. k : float Ratio of reflux to minimum reflux. Rmin : float, optional User enforced minimum reflux ratio. If the actual minimum reflux ratio is less than `Rmin`, this enforced value is ignored. Defaults to 0.6. specification="Composition" : "Composition" or "Recovery" If composition is used, `y_top` and `x_bot` must be specified. If recovery is used, `Lr` and `Hr` must be specified. P=101325 : float Operating pressure [Pa]. vessel_material : str, optional Vessel construction material. Defaults to 'Carbon steel'. tray_material : str, optional Tray construction material. Defaults to 'Carbon steel'. tray_type='Sieve' : 'Sieve', 'Valve', or 'Bubble cap' Tray type. tray_spacing=450 : float Typically between 152 to 915 mm. stage_efficiency=None : User enforced stage efficiency. If None, stage efficiency is calculated by the O'Connell correlation [2]_. velocity_fraction=0.8 : float Fraction of actual velocity to maximum velocity allowable before flooding. foaming_factor=1.0 : float Must be between 0 to 1. open_tray_area=0.1 : float Fraction of open area to active area of a tray. downcomer_area_fraction=None : float Enforced fraction of downcomer area to net (total) area of a tray. If None, estimate ratio based on Oliver's estimation [1]_. is_divided=False : bool True if the stripper and rectifier are two separate columns. Examples -------- >>> from biosteam.units import ShortcutColumn >>> from biosteam import Stream, settings >>> settings.set_thermo(['Water', 'Methanol', 'Glycerol'], cache=True) >>> feed = Stream('feed', flow=(80, 100, 25)) >>> bp = feed.bubble_point_at_P() >>> feed.T = bp.T # Feed at bubble point T >>> D1 = ShortcutColumn('D1', ins=feed, ... outs=('distillate', 'bottoms_product'), ... LHK=('Methanol', 'Water'), ... y_top=0.99, x_bot=0.01, k=2, ... is_divided=True) >>> D1.simulate() >>> # See all results >>> D1.show(T='degC', P='atm', composition=True) ShortcutColumn: D1 ins... [0] feed phase: 'l', T: 76.082 degC, P: 1 atm composition (%): Water 39 Methanol 48.8 Glycerol 12.2 -------- 205 kmol/hr outs... [0] distillate phase: 'g', T: 64.854 degC, P: 1 atm composition (%): Water 1 Methanol 99 -------- 100 kmol/hr [1] bottoms_product phase: 'l', T: 100.02 degC, P: 1 atm composition (%): Water 75.4 Methanol 0.761 Glycerol 23.9 -------- 105 kmol/hr >>> D1.results() Divided Distillation Column Units D1 Electricity Power kW 0.761 Cost USD/hr 0.0595 Cooling water Duty kJ/hr -7.54e+06 Flow kmol/hr 5.15e+03 Cost USD/hr 2.51 Low pressure steam Duty kJ/hr 1.34e+07 Flow kmol/hr 346 Cost USD/hr 82.4 Design Theoretical feed stage 8 Theoretical stages 16 Minimum reflux Ratio 1.06 Reflux Ratio 2.12 Rectifier stages 13 Stripper stages 26 Rectifier height ft 31.7 Stripper height ft 50.9 Rectifier diameter ft 4.52 Stripper diameter ft 3.64 Rectifier wall thickness in 0.312 Stripper wall thickness in 0.312 Rectifier weight lb 6.45e+03 Stripper weight lb 7.93e+03 Purchase cost Rectifier trays USD 1.52e+04 Stripper trays USD 2.01e+04 Rectifier tower USD 4.76e+04 Stripper platform and ladders USD 1.42e+04 Stripper tower USD 5.38e+04 Rectifier platform and ladders USD 1.81e+04 Condenser - Floating head USD 4.07e+04 Reflux drum - Horizontal pressur... USD 1.03e+04 Reflux drum - Platform and ladders USD 3.02e+03 Pump - Pump USD 4.37e+03 Pump - Motor USD 379 Reboiler - Floating head USD 2.98e+04 Total purchase cost USD 2.57e+05 Utility cost USD/hr 84.9 """ line = 'Distillation' _ins_size_is_fixed = False _N_ins = 1 _N_outs = 2 _energy_variable = None minimum_guess_distillate_recovery = 1e-11 bounded_solver_kwargs = dict( checkiter=False, checkbounds=False, ) iter_solver_kwargs = dict( xtol=5e-6, checkiter=False, checkconvergence=False, convergenceiter=3, ) def reset_cache(self, isdynamic=None): self._vle_chemicals = None super().reset_cache() def _run(self): for i in self.outs: i.empty() if all([i.isempty() for i in self.ins]): return # Initial mass balance self._run_binary_distillation_mass_balance() # Initialize objects to calculate bubble and dew points vle_chemicals = self.mixed_feed.vle_chemicals try: reset_cache = self._vle_chemicals != vle_chemicals or np.isnan(self._distillate_recoveries).any() except: reset_cache = True if reset_cache: self._dew_point = DewPoint(vle_chemicals, self.thermo) self._bubble_point = BubblePoint(vle_chemicals, self.thermo) self._IDs_vle = self._dew_point.IDs self._vle_chemicals = vle_chemicals # Setup light and heavy keys LHK = [i.ID for i in self.chemicals[self.LHK]] IDs = self._IDs_vle self._LHK_vle_index = np.array([IDs.index(i) for i in LHK], dtype=int) # Add temporary specification composition_spec = self.product_specification_format == 'Composition' if composition_spec: feed = self.mixed_feed distillate, bottoms = self.outs LK_index, HK_index = LHK_index = self._LHK_index LK_feed, HK_feed = feed.mol[LHK_index] self._Lr = distillate.mol[LK_index] / LK_feed self._Hr = bottoms.mol[HK_index] / HK_feed # Set starting point for solving column if reset_cache: self._add_trace_heavy_and_light_non_keys_in_products() self._distillate_recoveries = self._estimate_distillate_recoveries() else: distillate_recoveries = self._distillate_recoveries lb = self.minimum_guess_distillate_recovery ub = 1 - lb distillate_recoveries[distillate_recoveries < lb] = lb distillate_recoveries[distillate_recoveries > ub] = ub # Solve for new recoveries try: self._solve_distillate_recoveries() except: if not reset_cache: self.reset_cache() self._run() self._update_distillate_and_bottoms_temperature() # Remove temporary data if composition_spec: self._Lr = self._Hr = None if self.system and self.system.algorithm == 'Phenomena oriented': self._update_equilibrium_variables() def plot_stages(self): raise TypeError('cannot plot stages for shortcut column') def _design(self): self._run_FenskeUnderwoodGilliland() self._run_condenser_and_reboiler() self._complete_distillation_column_design() def _run_FenskeUnderwoodGilliland(self): LHK_index = self._LHK_index alpha_mean = self._estimate_mean_volatilities_relative_to_heavy_key() LK_index = self._LHK_vle_index[0] alpha_LK = alpha_mean[LK_index] feed, = self.ins distillate, bottoms = self.outs Nm = compute_minimum_theoretical_stages_Fenske(distillate.mol[LHK_index], bottoms.mol[LHK_index], alpha_LK) theta = self._solve_Underwood_constant(alpha_mean, alpha_LK) IDs = self._IDs_vle z_d = distillate.get_normalized_mol(IDs) Rm = compute_minimum_reflux_ratio_Underwood(alpha_mean, z_d, theta) if Rm < self.Rmin: Rm = self.Rmin R = self.k * Rm N = compute_theoretical_stages_Gilliland(Nm, Rm, R) feed_HK, feed_LK = feed.mol[LHK_index] feed_HK_over_LK = feed_HK / feed_LK Bs = bottoms.imol[IDs] Ds = distillate.imol[IDs] B = Bs.sum() D = Ds.sum() LK_index, HK_index = LHK_index z_LK_bottoms = bottoms.mol[LK_index] / B z_HK_distillate = distillate.mol[HK_index] / D feed_stage = compute_feed_stage_Kirkbride(N, B, D, feed_HK_over_LK, z_LK_bottoms, z_HK_distillate) design = self.design_results design['Theoretical feed stage'] = N - feed_stage design['Theoretical stages'] = N design['Minimum reflux'] = Rm design['Reflux'] = R def _get_relative_volatilities_LHK(self): distillate, bottoms = self.outs LHK = self.LHK condensate = self.condensate K_light, K_heavy = distillate.get_molar_composition(LHK) / condensate.get_molar_composition(LHK) alpha_LHK_distillate = K_light/K_heavy boilup = self.reboiler.outs[0]['g'] K_light, K_heavy = boilup.get_molar_composition(LHK) / bottoms.get_molar_composition(LHK) alpha_LHK_distillate = K_light/K_heavy alpha_LHK_bottoms = K_light/K_heavy return alpha_LHK_distillate, alpha_LHK_bottoms def _solve_Underwood_constant(self, alpha_mean, alpha_LK): q = self.get_feed_quality() z_f = self.ins[0].get_normalized_mol(self._IDs_vle) args = (q, z_f, alpha_mean) ub = np.inf lb = -np.inf bracket = flx.find_bracket(objective_function_Underwood_constant, 1.0, alpha_LK, lb, ub, args) theta = flx.IQ_interpolation(objective_function_Underwood_constant, *bracket, args=args, **self.bounded_solver_kwargs) return theta def _add_trace_heavy_and_light_non_keys_in_products(self): distillate, bottoms = self.outs LNK_index = self._LNK_index HNK_index = self._HNK_index feed_mol = self.mixed_feed.mol LNK_mol = feed_mol[LNK_index] HNK_mol = feed_mol[HNK_index] bottoms.mol[LNK_index] = LNK_trace = 0.0001 * LNK_mol distillate.mol[LNK_index] = LNK_mol - LNK_trace distillate.mol[HNK_index] = HNK_trace = 0.0001 * HNK_mol bottoms.mol[HNK_index] = HNK_mol - HNK_trace def _estimate_mean_volatilities_relative_to_heavy_key(self): # Mean volatilities taken at distillate and bottoms product distillate, bottoms = self.outs dew_point = self._dew_point bubble_point = self._bubble_point IDs = self._IDs_vle z_distillate = distillate.get_normalized_mol(IDs) z_bottoms = bottoms.get_normalized_mol(IDs) dp = (dew_point if self._partial_condenser else bubble_point)(z_distillate, P=self.P) bp = bubble_point(z_bottoms, P=self.P) K_distillate = compute_partition_coefficients(dp.y, dp.x) K_bottoms = compute_partition_coefficients(bp.y, bp.x) HK_index = self._LHK_vle_index[1] alpha_mean = compute_mean_volatilities_relative_to_heavy_key( K_distillate, K_bottoms, HK_index ) return alpha_mean def _estimate_distillate_recoveries(self): # Use Hengsteback and Geddes equations alpha_mean = self._estimate_mean_volatilities_relative_to_heavy_key() return compute_distillate_recoveries_Hengsteback_and_Gaddes(self.Lr, self.Hr, alpha_mean, self._LHK_vle_index) def _update_distillate_recoveries(self, distillate_recoveries): feed = self.mixed_feed distillate, bottoms = self.outs IDs = self._IDs_vle feed_mol = feed.imol[IDs] distillate.imol[IDs] = distillate_mol = distillate_recoveries * feed_mol bottoms.imol[IDs] = feed_mol - distillate_mol def _solve_distillate_recoveries(self): distillate_recoveries = self._distillate_recoveries flx.wegstein(self._recompute_distillate_recoveries, distillate_recoveries,**self.iter_solver_kwargs) def _recompute_distillate_recoveries(self, distillate_recoveries): if np.logical_or(distillate_recoveries > 1., distillate_recoveries < 0.).any(): raise InfeasibleRegion('distillate composition') self._update_distillate_recoveries(distillate_recoveries) distillate_recoveries = self._estimate_distillate_recoveries() if hasattr(self, '_distillate_recoveries_hook'): self._distillate_recoveries_hook(self._IDs_vle, distillate_recoveries) self._distillate_recoveries = distillate_recoveries return distillate_recoveries _get_energy_departure_coefficient = BinaryDistillation._get_energy_departure_coefficient _create_energy_departure_equations = BinaryDistillation._create_energy_departure_equations _create_material_balance_equations = BinaryDistillation._create_material_balance_equations # _update_net_flow_parameters = BinaryDistillation._update_net_flow_parameters # def _update_composition_parameters(self): # mol = sum([i.mol for i in self.ins]).to_array() # LHK_index = self._LHK_index # LHK_mol = mol[LHK_index] # light, heavy = LHK_mol # F_mol_LHK = light + heavy # zf = light / F_mol_LHK # y_top, y_bot = self._y # x_bot = self._x_bot # distillate_fraction = (zf - x_bot)/(y_top - x_bot) # if distillate_fraction < 1e-16: distillate_fraction = 1e-16 # if distillate_fraction > 1 - 1e-16: distillate_fraction = 1 - 1e-16 # F_mol_LHK_distillate = F_mol_LHK * distillate_fraction # distillate_LHK_mol = F_mol_LHK_distillate * self._y # max_flows = (1 - 1e-16) * LHK_mol # mask = distillate_LHK_mol > (1 - 1e-16) * max_flows # distillate_LHK_mol[mask] = max_flows[mask] # self._Lr = distillate_LHK_mol[0] / LHK_mol[0] # self._Hr = distillate_LHK_mol[1] / LHK_mol[1] # self._distillate_recoveries = split = self._estimate_distillate_recoveries() # top = mol * split # bottom = mol - top # y = top / top.sum() # x = bottom / bottom.sum() # x[x == 0] = 1e-16 # bottom[bottom == 0] = 1e-16 # self.K = y / x def _update_nonlinearities(self): mol = sum([i.mol for i in self.outs]).to_array() if self.product_specification_format == 'Composition': LHK_index = self._LHK_index LHK_mol = mol[LHK_index] light, heavy = LHK_mol F_mol_LHK = light + heavy zf = light / F_mol_LHK y_top, y_bot = self._y x_bot = self._x_bot distillate_fraction = (zf - x_bot)/(y_top - x_bot) if distillate_fraction < 1e-16: distillate_fraction = 1e-16 if distillate_fraction > 1 - 1e-16: distillate_fraction = 1 - 1e-16 F_mol_LHK_distillate = F_mol_LHK * distillate_fraction distillate_LHK_mol = F_mol_LHK_distillate * self._y max_flows = (1 - 1e-16) * LHK_mol mask = distillate_LHK_mol > (1 - 1e-16) * max_flows distillate_LHK_mol[mask] = max_flows[mask] self._Lr = distillate_LHK_mol[0] / LHK_mol[0] self._Hr = distillate_LHK_mol[1] / LHK_mol[1] self._distillate_recoveries = split = self._estimate_distillate_recoveries() top = mol * split bottom = mol - top bottom_dummy = bottom.copy() mask = bottom_dummy == 0 bottom_dummy[mask] = 1e-16 self.S = top / bottom_dummy self.S[mask] = inf
# s_top, s_bottom = self.outs # s_dummy = s_top.copy() # s_dummy.mol = top # s_top.T = (s_dummy.dew_point_at_P() if self._partial_condenser else s_dummy.bubble_point_at_P()).T # s_dummy.mol = bottom # s_bottom.T = s_dummy.bubble_point_at_P().T # %% Rigorous absorption/stripping column
[docs] class AdiabaticMultiStageVLEColumn(MultiStageEquilibrium): r""" Create an adsorption or stripping column without a reboiler/condenser. The diameter is based on tray separation and flooding velocity. Purchase costs are based on correlations compiled by Warren et. al. Parameters ---------- ins : * [0] Liquid * [1] Vapor outs : * [0] Vapor * [1] Liquid P : float Operating pressure [Pa]. vessel_material : str, optional Vessel construction material. Defaults to 'Carbon steel'. tray_material : str, optional Tray construction material. Defaults to 'Carbon steel'. tray_type='Sieve' : 'Sieve', 'Valve', or 'Bubble cap' Tray type. tray_spacing=450 : float Typically between 152 to 915 mm. stage_efficiency=None : User enforced stage efficiency. If None, stage efficiency is calculated by the O'Connell correlation [2]_. velocity_fraction=0.8 : float Fraction of actual velocity to maximum velocity allowable before flooding. foaming_factor=1.0 : float Must be between 0 to 1. open_tray_area=0.1 : float Fraction of open area to active area of a tray. downcomer_area_fraction=None : float Enforced fraction of downcomer area to net (total) area of a tray. If None, estimate ratio based on Oliver's estimation [1]_. Examples -------- >>> import biosteam as bst >>> bst.settings.set_thermo(['AceticAcid', 'EthylAcetate', 'Water', 'MTBE'], cache=True) >>> feed = bst.Stream('feed', Water=75, AceticAcid=5, MTBE=20, T=320) >>> steam = bst.Stream('steam', Water=100, phase='g', T=390) >>> absorber = bst.Absorber(None, ... N_stages=2, ins=[feed, steam], ... solute="AceticAcid", outs=['vapor', 'liquid'] ... ) >>> absorber.simulate() >>> absorber.show() AdiabaticMultiStageVLEColumn ins... [0] feed phase: 'l', T: 320 K, P: 101325 Pa flow (kmol/hr): AceticAcid 5 Water 75 MTBE 20 [1] steam phase: 'g', T: 390 K, P: 101325 Pa flow (kmol/hr): Water 100 outs... [0] vapor phase: 'g', T: 366.33 K, P: 101325 Pa flow (kmol/hr): AceticAcid 3.71 Water 73.8 MTBE 20 [1] liquid phase: 'l', T: 372.87 K, P: 101325 Pa flow (kmol/hr): AceticAcid 1.29 Water 101 MTBE 0.00031 >>> absorber.results() Absorber Units Design Theoretical stages 2 Actual stages 4 Height ft 19.9 Diameter ft 3 Wall thickness in 0.312 Weight lb 2.71e+03 Purchase cost Trays USD 5.59e+03 Tower USD 2.91e+04 Platform and ladders USD 7.52e+03 Total purchase cost USD 4.23e+04 Utility cost USD/hr 0 """ _graphics = vertical_column_graphics _ins_size_is_fixed = False _N_ins = 2 _N_outs = 2 _units = {'Height': 'ft', 'Diameter': 'ft', 'Wall thickness': 'in', 'Weight': 'lb'} _max_agile_design = ( 'Actual stages', 'Height', 'Diameter', 'Wall thickness', 'Weight', ) _F_BM_default = { 'Platform and ladders': 1, 'Tower': 4.3, 'Trays': 4.3, } # [dict] Bounds for results _bounds = {'Diameter': (3., 24.), 'Height': (27., 170.), 'Weight': (9000., 2.5e6)} _side_draw_names = ('vapor_side_draws', 'liquid_side_draws') def _init(self, N_stages, solute, # Needed to compute the Murphree stage efficiency feed_stages=None, vapor_side_draws=None, liquid_side_draws=None, P=101325, partition_data=None, vessel_material='Carbon steel', tray_material='Carbon steel', tray_type='Sieve', tray_spacing=450, stage_efficiency=None, velocity_fraction=0.8, foaming_factor=1.0, open_tray_area=0.1, downcomer_area_fraction=None, weir_height=0.1, use_cache=None, collapsed_init=False, method=None, ): super()._init(N_stages=N_stages, feed_stages=feed_stages, top_side_draws=vapor_side_draws, bottom_side_draws=liquid_side_draws, partition_data=partition_data, phases=("g", "l"), collapsed_init=collapsed_init, P=P, use_cache=use_cache, method=method) # Construction specifications self.solute = solute self.vessel_material = vessel_material self.tray_type = tray_type self.tray_material = tray_material self.tray_spacing = tray_spacing self.stage_efficiency = stage_efficiency self.velocity_fraction = velocity_fraction self.foaming_factor = foaming_factor self.open_tray_area = open_tray_area self.downcomer_area_fraction = downcomer_area_fraction self.weir_height = weir_height self._last_args = ( self.N_stages, self.feed_stages, self.vapor_side_draws, self.liquid_side_draws, self.use_cache, *self._ins, self.partition_data, self.P, self.collapsed_init, ) def _setup(self): super()._setup() args = (self.N_stages, self.feed_stages, self.vapor_side_draws, self.liquid_side_draws, self.use_cache, *self._ins, self.partition_data, self.P, self.collapsed_init) if args != self._last_args: MultiStageEquilibrium._init( self, N_stages=self.N_stages, feed_stages=self.feed_stages, phases=('g', 'l'), P=self.P, top_side_draws=self.vapor_side_draws, bottom_side_draws=self.liquid_side_draws, partition_data=self.partition_data, use_cache=self.use_cache, collapsed_init=self.collapsed_init, ) self._last_args = args def reset_cache(self, isdynamic=None): self._last_args = None super().reset_cache() @property def vapor(self): return self.outs[0] @property def liquid(self): return self.outs[1] weir_height = Distillation.weir_height tray_spacing = Distillation.tray_spacing stage_efficiency = Distillation.stage_efficiency velocity_fraction = Distillation.velocity_fraction foaming_factor = Distillation.foaming_factor open_tray_area = Distillation.open_tray_area downcomer_area_fraction = Distillation.downcomer_area_fraction tray_type = Distillation.tray_type tray_material = Distillation.tray_material vessel_material = Distillation.vessel_material def _actual_stages(self): """Return a tuple with the actual number of stages for the rectifier and the stripper.""" eff = self.stage_efficiency if eff is None: # Calculate Murphree Efficiency vapor, liquid = self.outs mu = liquid.get_property('mu', 'mPa*s') alpha = self._get_relative_volatilities() L_Rmol = liquid.F_mol V_Rmol = vapor.F_mol eff = design.compute_murphree_stage_efficiency( mu, alpha, L_Rmol, V_Rmol ) # Calculate actual number of stages return np.ceil(self.N_stages / eff) def _get_relative_volatilities(self): stages = self.stages IDs = stages[0].partition.IDs solute = self.solute index = IDs.index(solute) K = gmean([i.partition.K[index] for i in stages]) if self.liquid.imol[solute] > self.vapor.imol[solute]: self.line = "Stripper" alpha = 1 / K else: self.line = "Absorber" alpha = K return alpha def _design(self): vapor_out, liquid_out = self.outs Design = self.design_results TS = self._TS A_ha = self._A_ha F_F = self._F_F f = self._f ### Get diameter of column based on outlets (assuming they are comparable to each stages) ### rho_L = liquid_out.rho V = vapor_out.F_mass V_vol = vapor_out.get_total_flow('m^3/s') rho_V = vapor_out.rho L = liquid_out.F_mass # To get liquid going down F_LV = design.compute_flow_parameter(L, V, rho_V, rho_L) C_sbf = design.compute_max_capacity_parameter(TS, F_LV) sigma = liquid_out.get_property('sigma', 'dyn/cm') U_f = design.compute_max_vapor_velocity(C_sbf, sigma, rho_L, rho_V, F_F, A_ha) A_dn = self._A_dn if A_dn is None: A_dn = design.compute_downcomer_area_fraction(F_LV) diameter = design.compute_tower_diameter(V_vol, U_f, f, A_dn) * 3.28 Po = self.P * 0.000145078 # to psi rho_M = material_densities_lb_per_in3[self.vessel_material] if Po < 14.68: warn('vacuum pressure vessel ASME codes not implemented yet; ' 'wall thickness may be inaccurate and stiffening rings may be ' 'required', category=RuntimeWarning) Design['Theoretical stages'] = self.N_stages Design['Actual stages'] = actual_stages = self._actual_stages() Design['Height'] = H = design.compute_tower_height(TS, actual_stages) * 3.28 Design['Diameter'] = Di = diameter Design['Wall thickness'] = tv = design.compute_tower_wall_thickness(Po, Di, H) Design['Weight'] = design.compute_tower_weight(Di, H, tv, rho_M) def _cost(self): Design = self.design_results Cost = self.baseline_purchase_costs F_M = self.F_M # Cost trays N_T = Design['Actual stages'] Di = Design['Diameter'] F_M['Trays'] = self._F_TM_function(Di) Cost['Trays'] = design.compute_purchase_cost_of_trays(N_T, Di) # Cost vessel assuming T < 800 F W = Design['Weight'] # in lb H = Design['Height'] # in ft Cost['Tower'] = design.compute_empty_tower_cost(W) Cost['Platform and ladders'] = design.compute_plaform_ladder_cost(Di, H)
Stripper = Absorber = AdiabaticMultiStageVLEColumn # %% Rigorous distillation column based on MESH (Mass, Equilibrium, Summation, and Enthalpy) equations
[docs] class MESHDistillation(MultiStageEquilibrium, new_graphics=False): r""" Create a distillation column that rigorously converges MESH (Mass, Equilibrium, Summation, and Enthalpy) equations. Parameters ---------- ins : Inlet fluids to be mixed into the feed stage. outs : * [0] Distillate * [1] Bottoms product * [...] Vapor side draws * [...] Liquid side draws LHK : tuple[str] IDs of light and heavy keys. The stage efficiency is estimated based on the relative volatility of the light and heavy keys. boilup : float Vapor to liquid flow rate at the reboiler. reflux : float Liquid to vapor flow rate at the condenser. N_stages : int Number of stages. feed_stages : tuple[int] Stage at which each inlet enters, respectively vapor_side_draws : tuple[tuple[int]] Stage number and split fraction pairs. liquid_side_draws : tuple[tuple[int]] Stage number and split fraction pairs. P=101325 : float Operating pressure [Pa]. vessel_material : str, optional Vessel construction material. Defaults to 'Carbon steel'. tray_material : str, optional Tray construction material. Defaults to 'Carbon steel'. tray_type='Sieve' : 'Sieve', 'Valve', or 'Bubble cap' Tray type. tray_spacing=450 : float Typically between 152 to 915 mm. stage_efficiency=None : User enforced stage efficiency. If None, stage efficiency is calculated by the O'Connell correlation [2]_. velocity_fraction=0.8 : float Fraction of actual velocity to maximum velocity allowable before flooding. foaming_factor=1.0 : float Must be between 0 to 1. open_tray_area=0.1 : float Fraction of open area to active area of a tray. downcomer_area_fraction=None : float Enforced fraction of downcomer area to net (total) area of a tray. If None, estimate ratio based on Oliver's estimation [1]_. is_divided=False : bool True if the stripper and rectifier are two separate columns. Examples -------- Simulate distillation column with 5 stages, a 0.673 reflux ratio, 2.57 boilup ratio, and feed at stage 2: >>> import biosteam as bst >>> bst.settings.set_thermo(['Water', 'Ethanol'], cache=True) >>> feed = bst.Stream('feed', Ethanol=80, Water=100, T=80.215 + 273.15) >>> D1 = bst.MESHDistillation(None, N_stages=5, ins=[feed], feed_stages=[2], ... outs=['vapor', 'liquid'], ... reflux=0.673, boilup=2.57, ... LHK=('Ethanol', 'Water'), ... ) >>> D1.simulate() >>> vapor, liquid = D1.outs >>> vapor.imol['Ethanol'] / feed.imol['Ethanol'] 0.96 >>> vapor.imol['Ethanol'] / vapor.F_mol 0.69 >>> D1.results() Distillation Units Electricity Power kW 0.574 Cost USD/hr 0.0449 Cooling water Duty kJ/hr -2.98e+06 Flow kmol/hr 2.03e+03 Cost USD/hr 0.992 Low pressure steam Duty kJ/hr 7.8e+06 Flow kmol/hr 202 Cost USD/hr 48 Design Theoretical stages 5 Actual stages 7 Height ft 24.3 Diameter ft 3.32 Wall thickness in 0.312 Weight lb 3.63e+03 Purchase cost Trays USD 8.11e+03 Tower USD 3.43e+04 Platform and ladders USD 9.43e+03 Condenser - Floating head USD 2.36e+04 Reflux drum - Vertical pressure ... USD 1.29e+04 Reflux drum - Platform and ladders USD 3.89e+03 Pump - Pump USD 4.35e+03 Pump - Motor USD 358 Reboiler - Floating head USD 2.34e+04 Total purchase cost USD 1.2e+05 Utility cost USD/hr 49 Simulate distillation column with a full condenser, 5 stages, a 0.673 reflux ratio, 2.57 boilup ratio, and feed at stage 2: >>> import biosteam as bst >>> bst.settings.set_thermo(['Water', 'Ethanol'], cache=True) >>> feed = bst.Stream('feed', Ethanol=80, Water=100, T=80.215 + 273.15) >>> D1 = bst.MESHDistillation(None, N_stages=5, ins=[feed], feed_stages=[2], ... outs=['vapor', 'liquid', 'distillate'], ... reflux=0.673, boilup=2.57, ... LHK=('Ethanol', 'Water'), ... full_condenser=True, ... ) >>> D1.simulate() >>> vapor, liquid, distillate = D1.outs >>> distillate.imol['Ethanol'] / feed.imol['Ethanol'] 0.81 >>> distillate.imol['Ethanol'] / distillate.F_mol 0.70 >>> D1.results() Distillation Units Electricity Power kW 0.918 Cost USD/hr 0.0718 Cooling water Duty kJ/hr -9.13e+06 Flow kmol/hr 6.24e+03 Cost USD/hr 3.04 Low pressure steam Duty kJ/hr 9.62e+06 Flow kmol/hr 249 Cost USD/hr 59.2 Design Theoretical stages 5 Actual stages 6 Height ft 22.9 Diameter ft 3.82 Wall thickness in 0.312 Weight lb 4e+03 Purchase cost Trays USD 7.58e+03 Tower USD 3.62e+04 Platform and ladders USD 9.8e+03 Condenser - Floating head USD 3.5e+04 Pump - Pump USD 4.33e+03 Pump - Motor USD 390 Reboiler - Floating head USD 2.41e+04 Total purchase cost USD 1.17e+05 Utility cost USD/hr 62.3 Notes ----- The convergence algorithm decouples the equilibrium relationships, mass balances, and energy balances using a custom version of the Wang-Henke bubble point method. This algorithm is authored by Yoel Cortes-Pena, but is not yet peer reviewed. The main difference is that the tridiagonal matrix of mass balances across stages is used to solve for flow rates instead of mass fractions. The initialization algorithm first converges a "collapsed" column without adiabatic stages which have no feeds or side draws. This collapsed column is initialized by solving for liquid and vapor flow rates assuming no phase change across adiabatic stages and unity partition coefficients at reboilers/condensers (in which case the stripping factor is equal to the boil-up ratio). Then, top and bottom stage temperatures are assumed to be the bubble point and dew point of the fed mixture and the temperature across stages are linearly interpolated. The partition coefficients in all stages are assumed to be equal to the feed bubble point. The Murphree efficiency (i.e. stage efficiency) is based on the modified O'Connell correlation [2]_. The diameter is based on tray separation and flooding velocity [1]_ [3]_. Purchase costs are based on correlations compiled by Warren et. al. [4]_. """ auxiliary_unit_names = ( 'condenser', 'reflux_drum', 'top_split', 'pump', 'reboiler', 'bottoms_split', 'vacuum_system' ) line = 'Distillation' _ins_size_is_fixed = False _outs_size_is_fixed = False _N_ins = 1 _N_outs = 2 _bounds = AdiabaticMultiStageVLEColumn._bounds _side_draw_names = AdiabaticMultiStageVLEColumn._side_draw_names _F_BM_default = AdiabaticMultiStageVLEColumn._F_BM_default _max_agile_design = AdiabaticMultiStageVLEColumn._max_agile_design _units = AdiabaticMultiStageVLEColumn._units weir_height = Distillation.weir_height tray_spacing = Distillation.tray_spacing stage_efficiency = Distillation.stage_efficiency velocity_fraction = Distillation.velocity_fraction foaming_factor = Distillation.foaming_factor open_tray_area = Distillation.open_tray_area downcomer_area_fraction = Distillation.downcomer_area_fraction tray_type = Distillation.tray_type tray_material = Distillation.tray_material vessel_material = Distillation.vessel_material def _init(self, LHK, N_stages, feed_stages, reflux=None, boilup=None, P=101325, vapor_side_draws=None, liquid_side_draws=None, stage_reactions=None, vessel_material='Carbon steel', tray_material='Carbon steel', tray_type='Sieve', tray_spacing=450, stage_efficiency=None, velocity_fraction=0.8, foaming_factor=1.0, open_tray_area=0.1, weir_height=0.1, downcomer_area_fraction=None, vacuum_system_preference='Liquid-ring pump', partition_data=None, full_condenser=None, collapsed_init=None, use_cache=None, algorithm=None, method=None, inside_out=None, maxiter=None, stage_specifications=None, ): if full_condenser: if liquid_side_draws is None: liquid_side_draws = {} if 0 not in liquid_side_draws: if reflux is None: liquid_side_draws[0] = 1. else: liquid_side_draws[0] = reflux / (1 + reflux) reflux = inf # Boil-up is 0 self.LHK = LHK if stage_specifications is None: stage_specifications = {} if reflux is not None: stage_specifications[0] = ('Reflux', reflux) if boilup is not None: stage_specifications[-1] = ('Boilup', boilup) super()._init(N_stages=N_stages, feed_stages=feed_stages, top_side_draws=vapor_side_draws, bottom_side_draws=liquid_side_draws, partition_data=partition_data, phases=("g", "l"), P=P, use_cache=use_cache, stage_specifications=stage_specifications, stage_reactions=stage_reactions, collapsed_init=collapsed_init, inside_out=inside_out, algorithm=algorithm, method=method, maxiter=maxiter) # Construction specifications self.weir_height = weir_height self.vessel_material = vessel_material self.tray_type = tray_type self.tray_material = tray_material self.tray_spacing = tray_spacing self.stage_efficiency = stage_efficiency self.velocity_fraction = velocity_fraction self.foaming_factor = foaming_factor self.open_tray_area = open_tray_area self.downcomer_area_fraction = downcomer_area_fraction self.vacuum_system_preference = vacuum_system_preference self._load_components() self._last_args = ( self.N_stages, self.feed_stages, self.vapor_side_draws, self.liquid_side_draws, self.use_cache, *self._ins, self.partition_data, self.P, self.stage_specifications, ) @property def reflux(self): if 0 in self.stage_specifications: name, value = self.stage_specifications[0] if name == 'Reflux': return value @reflux.setter def reflux(self, reflux): self.stage_specifications[0] = ('Reflux', reflux) @property def boilup(self): if -1 in self.stage_specifications: name, value = self.stage_specifications[-1] if name == 'Boilup': return value else: last_stage = self.N_stages - 1 name, value = self.stage_specifications[last_stage] if name == 'Boilup': return value @boilup.setter def boilup(self, boilup): self.stage_specifications[-1] = ('Boilup', boilup) def _setup(self): super()._setup() args = (self.N_stages, self.feed_stages, self.vapor_side_draws, self.liquid_side_draws, self.use_cache, *self._ins, self.partition_data, self.P, self.stage_specifications) if args != self._last_args: MultiStageEquilibrium._init( self, N_stages=self.N_stages, feed_stages=self.feed_stages, phases=('g', 'l'), P=self.P, top_side_draws=self.vapor_side_draws, bottom_side_draws=self.liquid_side_draws, partition_data=self.partition_data, stage_specifications=self.stage_specifications, stage_reactions=self.stage_reactions, use_cache=self.use_cache, ) self._last_args = args def _load_components(self): # Setup components thermo = self.thermo reflux = self.reflux #: [HXutility] Condenser. if reflux is None: # No condenser self.condenser = self.reflux_drum = self.top_split = None self.condensate = self.stages[0].outs[1] elif reflux == inf: # Full condenser self.reflux_drum = None self.auxiliary( 'condenser', HXutility, ins='vapor', thermo=thermo, ) self.auxiliary( 'top_split', MockSplitter, ins = self.condenser-0, outs=(self-2, 'condensate'), thermo=thermo, ) self.condensate = self.top_split-1 self.condenser.inlet.phase = 'g' elif reflux == 0: self.condenser = self.reflux_drum = self.top_split = None self.condensate = self.stages[0].outs[1] else: # Partial condenser self.top_split = None self.auxiliary( 'condenser', HXutility, ins='vapor', thermo=thermo, ) self.condenser.outlet.phases = ('g', 'l') self.auxiliary( 'reflux_drum', RefluxDrum, ins=self.condenser-0, outs=(self-0, 'condensate') ) self.condensate = self.reflux_drum-1 self.condenser.inlet.phase = 'g' self.auxiliary('pump', bst.Pump, 'liquid', thermo=thermo, ) self.auxiliary('reboiler', HXutility, self.pump-0, thermo=thermo, ) self.reboiler.outs[0].phases = ('g', 'l') self.auxiliary('bottoms_split', bst.PhaseSplitter, self.reboiler-0, ('boilup', self-1), thermo=thermo, ) def plot_stages(self): raise TypeError('cannot plot stages for shortcut column') def _actual_stages(self): """Return a tuple with the actual number of stages for the rectifier and the stripper.""" eff = self.stage_efficiency if eff is None: # Calculate Murphree Efficiency eff = 1 stages = self.stages IDs = stages[0].partition.IDs LK, HK = self.LHK LI = IDs.index(LK) HI = IDs.index(HK) N_stages = 0 for i in stages: try: vapor, liquid = i.partition.outs mu = liquid.get_property('mu', 'mPa*s') alpha = i.partition.K[LI] / i.partition.K[HI] L_Rmol = liquid.F_mol V_Rmol = vapor.F_mol eff *= design.compute_murphree_stage_efficiency( mu, alpha, L_Rmol, V_Rmol ) N_stages += 1 except: N_stages += i.partition.B in (0, inf) eff = eff ** (1 / N_stages) return N_stages, np.ceil(N_stages / eff) else: return self.N_stages, np.ceil(self.N_stages / eff) def update_liquid_holdup(self): diameter = self.estimate_diameter() hw = weir_height = self._TS * self.weir_height * 0.0393701 # mm to inches area = diameter * diameter * pi / 4 b = 2/3 partitions = self.partitions for i in self.stage_reactions: partition = partitions[i] vapor, liquid = partition.outs if vapor.isempty(): Ks = 0 elif liquid.isempty(): partition.reaction.liquid_volume = 0 continue else: rho_V = vapor.rho rho_L = liquid.rho active_area = area * (1 - 2 * partition.downcomer_area_fraction) Ua = vapor.get_total_flow('ft3/s') / active_area Ks = Ua * sqrt(rho_V / (rho_L - rho_V)) # Capacity parameter Phi_e = exp(-4.257 * Ks**0.91) # Effective relative froth density Lw = 0.73 * diameter * 12 # Weir length [in] assuming Ad/A = 0.1 # TODO: Compute weir length or other Ad/A qL = liquid.get_total_flow('gal/min') CL = 0.362 + 0.317 * exp(-3.5 * weir_height) hL = Phi_e * (hw + CL * (qL / (Lw * Phi_e)) ** b) # equivalent height of clear liquid holdup [in] partition.reaction.liquid_volume = hL * area * 0.00236155 # m3 def estimate_diameter(self): # ft diameters = [] TS = self._TS A_ha = self._A_ha F_F = self._F_F f = self._f for i in self.stages: vapor, liquid = i.partition.outs if liquid.isempty() or vapor.isempty(): continue rho_L = liquid.rho V = vapor.F_mass V_vol = vapor.get_total_flow('m^3/s') rho_V = vapor.rho L = liquid.F_mass # To get liquid going down sigma = liquid.get_property('sigma', 'dyn/cm') F_LV = design.compute_flow_parameter(L, V, rho_V, rho_L) C_sbf = design.compute_max_capacity_parameter(TS, F_LV) U_f = design.compute_max_vapor_velocity(C_sbf, sigma, rho_L, rho_V, F_F, A_ha) A_dn = self._A_dn if A_dn is None: i.partition.downcomer_area_fraction = A_dn = design.compute_downcomer_area_fraction(F_LV) diameters.append( design.compute_tower_diameter(V_vol, U_f, f, A_dn) ) return max(diameters) * 3.28 # ft def _design(self): self._simulate_condenser_and_reboiler() Design = self.design_results ### Get maximum required diameter of column across stages ### Po = self.P * 0.000145078 # to psi rho_M = material_densities_lb_per_in3[self.vessel_material] if Po < 14.68: warn('vacuum pressure vessel ASME codes not implemented yet; ' 'wall thickness may be inaccurate and stiffening rings may be ' 'required', category=RuntimeWarning) N_theoretical, N_actual = self._actual_stages() TS = self._TS Design['Theoretical stages'] = N_theoretical Design['Actual stages'] = actual_stages = N_actual - (bool(self.condenser) + bool(self.reboiler)) Design['Height'] = H = design.compute_tower_height(TS, actual_stages) * 3.28 Design['Diameter'] = Di = self.estimate_diameter() Design['Wall thickness'] = tv = design.compute_tower_wall_thickness(Po, Di, H) Design['Weight'] = design.compute_tower_weight(Di, H, tv, rho_M) def _simulate_condenser_and_reboiler(self): top = self.stages[0] bottom = self.stages[-1] reboiler = self.reboiler condenser = self.condenser reflux_drum = self.reflux_drum top_split = self.top_split # Set condenser conditions if condenser: condenser.simulate_as_auxiliary_exchanger(top.ins, top.outs, vle=False) # Set reboiler conditions reboiler.simulate_as_auxiliary_exchanger(bottom.ins, bottom.outs, vle=False) liq = reboiler.ins[0] self.pump.ins[0].copy_like(liq) self.pump.simulate() self.bottoms_split.simulate() if reflux_drum: reflux_drum.simulate() elif top_split: splitter = self.stages[0].splitters[-1] top_split.ins[0].copy_like(splitter.ins[0]) for i, j in zip(top_split.ins + top_split.outs, splitter.ins + splitter.outs): i.copy_like(j) def _cost(self): Design = self.design_results Cost = self.baseline_purchase_costs F_M = self.F_M # Cost trays assuming a partial condenser N_T = Design['Actual stages'] - 1. Di = Design['Diameter'] F_M['Trays'] = self._F_TM_function(Di) Cost['Trays'] = design.compute_purchase_cost_of_trays(N_T, Di) # Cost vessel assuming T < 800 F W = Design['Weight'] # in lb H = Design['Height'] # in ft Cost['Tower'] = design.compute_empty_tower_cost(W) Cost['Platform and ladders'] = design.compute_plaform_ladder_cost(Di, H)
RigorousDistillation = MESHDistillation