Source code for thermosteam.equilibrium.dew_point

# -*- coding: utf-8 -*-
# BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules
# Copyright (C) 2020-2023, Yoel Cortes-Pena <yoelcortes@gmail.com>
# 
# This module is under the UIUC open-source license. See 
# github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt
# for license details.
"""
"""
import numpy as np
import flexsolve as flx
from numba import njit
from .. import functional as fn
from ..exceptions import InfeasibleRegion
from .._settings import settings
from .domain import vle_domain

__all__ = ('DewPoint',)

# %% Solvers

# @njit(cache=True)
def gamma_iter(gamma, x_gamma, T, P, f_gamma, gamma_args):
    # Add back trace amounts for activity coefficients at infinite dilution
    x = x_gamma / gamma
    mask = x < 1e-32
    x[mask] = 1e-32
    x = fn.normalize(x)
    return f_gamma(x, T, *gamma_args)

def solve_x(x_guess, x_gamma, T, P, f_gamma, gamma_args):
    mask = x_guess < 1e-32
    x_guess[mask] = 1e-32
    x_guess = fn.normalize(x_guess)
    gamma = f_gamma(x_guess, T, *gamma_args)
    args = (x_gamma, T, P, f_gamma, gamma_args)
    gamma = flx.wegstein(
        gamma_iter, gamma, 1e-12, args=args, checkiter=False,
        checkconvergence=False, convergenceiter=5, maxiter=DewPoint.maxiter
    )
    try:
        return x_gamma / gamma
    except:
        return x_gamma / gamma_iter(gamma, *args)

# %% Dew point values container

class DewPointValues:
    __slots__ = ('T', 'P', 'IDs', 'z', 'x')
    
    def __init__(self, T, P, IDs, z, x):
        self.T = T
        self.P = P
        self.IDs = IDs
        self.z = z
        self.x = x
        
    @property
    def y(self): return self.z
        
    def __repr__(self):
        return f"{type(self).__name__}(T={self.T:.2f}, P={self.P:.0f}, IDs={self.IDs}, z={self.z}, x={self.x})"


class ReactiveDewPointValues:
    __slots__ = ('T', 'P', 'IDs', 'z0', 'dz', 'y', 'x')
    
    def __init__(self, T, P, IDs, z0, dz, y, x):
        self.T = T
        self.P = P
        self.IDs = IDs
        self.z0 = z0
        self.dz = dz
        self.y = y
        self.x = x
        
    def __repr__(self):
        return f"{type(self).__name__}(T={self.T:.2f}, P={self.P:.0f}, IDs={self.IDs}, z0={self.z0}, dz={self.dz}, y={self.y}, x={self.x})"


# %% Dew point calculation

[docs] class DewPoint: """ Create a DewPoint object that returns dew point values when called with a composition and either a temperture (T) or pressure (P). Parameters ---------- chemicals=None : Iterable[:class:`~thermosteam.Chemical`], optional thermo=None : :class:`~thermosteam.Thermo`, optional Examples -------- >>> import thermosteam as tmo >>> chemicals = tmo.Chemicals(['Water', 'Ethanol'], cache=True) >>> tmo.settings.set_thermo(chemicals) >>> DP = tmo.equilibrium.DewPoint(chemicals) >>> # Solve for dew point at constant temperautre >>> molar_composition = (0.5, 0.5) >>> dp = DP(z=molar_composition, T=355) >>> dp DewPointValues(T=355.00, P=92008, IDs=('Water', 'Ethanol'), z=[0.5 0.5], x=[0.849 0.151]) >>> # Note that the result is a DewPointValues object which contain all results as attibutes >>> (dp.T, round(dp.P), dp.IDs, dp.z, dp.x) (355, 92008, ('Water', 'Ethanol'), array([0.5, 0.5]), array([0.849, 0.151])) >>> # Solve for dew point at constant pressure >>> DP(z=molar_composition, P=2*101324) DewPointValues(T=376.25, P=202648, IDs=('Water', 'Ethanol'), z=[0.5 0.5], x=[0.83 0.17]) """ __slots__ = ('chemicals', 'phi', 'gamma', 'IDs', 'pcf', 'Psats', 'Tmin', 'Tmax', 'Pmin', 'Pmax') _cached = {} maxiter = 50 T_tol = 1e-9 P_tol = 1e-3 def __new__(cls, chemicals=(), thermo=None): thermo = settings.get_default_thermo(thermo) chemicals = tuple(chemicals) key = (chemicals, thermo.Gamma, thermo.Phi, thermo.PCF) cached = cls._cached if key in cached: return cached[key] else: self = super().__new__(cls) self.IDs = tuple([i.ID for i in chemicals]) self.gamma = thermo.Gamma(chemicals) self.phi = thermo.Phi(chemicals) self.pcf = thermo.PCF(chemicals) self.Psats = Psats = [i.Psat for i in chemicals] Tmin, Tmax = vle_domain(chemicals) self.Tmin = Tmin self.Tmax = Tmax self.Pmin = min([i(Tmin) for i in Psats]) self.Pmax = max([i(Tmax) for i in Psats]) self.chemicals = chemicals cached[key] = self return self def _solve_x(self, x_gamma, T, P, x): gamma = self.gamma return solve_x(x, x_gamma, T, P, gamma.f, gamma.args) def _T_error(self, T, P, z_norm, zP, x): if T <= 0: raise InfeasibleRegion('negative temperature') Psats = np.array([i(T) for i in self.Psats]) Psats[Psats < 1e-16] = 1e-16 # Prevent floating point error phi = self.phi(z_norm, T, P) pcf = self.pcf(T, P, Psats) x_gamma = phi * zP / Psats / pcf x[:] = self._solve_x(x_gamma, T, P, x) return 1 - x.sum() def _T_error_reactive(self, T, P, z, dz, y, x, gas_conversion): if T <= 0: raise InfeasibleRegion('negative temperature') dz[:] = gas_conversion(z, T, P, 'g') y[:] = z + dz y /= y.sum() Psats = np.array([i(T) for i in self.Psats]) Psats[Psats < 1e-16] = 1e-16 # Prevent floating point error phi = self.phi(y, T, P) pcf = self.pcf(T, P, Psats) x_gamma = phi * y * P / Psats / pcf x[:] = self._solve_x(x_gamma, T, P, x) return 1 - x.sum() def _T_error_ideal(self, T, zP, x): Psats = np.array([i(T) for i in self.Psats]) Psats[Psats < 1e-16] = 1e-16 # Prevent floating point error x[:] = zP / Psats return 1 - x.sum() def _P_error(self, P, T, z_norm, z_over_Psats, Psats, x): if P <= 0: raise InfeasibleRegion('negative pressure') x_gamma = z_over_Psats * P * self.phi(z_norm, T, P) / self.pcf(T, P, Psats) x[:] = self._solve_x(x_gamma, T, P, x) return 1 - x.sum() def _P_error_reactive(self, P, T, Psats, z, dz, y, x, gas_conversion): if P <= 0: raise InfeasibleRegion('negative pressure') dz[:] = gas_conversion(z, T, P, 'g') y[:] = z + dz y /= y.sum() x_gamma = y / Psats * P * self.phi(y, T, P) / self.pcf(T, P, Psats) x[:] = self._solve_x(x_gamma, T, P, x) return 1 - x.sum() def _Tx_ideal(self, zP): f = self._T_error_ideal Tmin = self.Tmin + 10. Tmax = self.Tmax - 10. x = zP.copy() args = (zP, x) fmin = f(Tmin, *args) if fmin > 0.: return Tmin, x fmax = f(Tmax, *args) if fmax < 0.: return Tmax, x T = flx.IQ_interpolation(f, Tmin, Tmax, fmin, fmax, None, self.T_tol, 5e-12, args, checkiter=False, checkbounds=False, maxiter=self.maxiter) return T, x def _Px_ideal(self, z_over_Psats): P = 1. / z_over_Psats.sum() x = z_over_Psats * P return P, x
[docs] def __call__(self, z, *, T=None, P=None, gas_conversion=None): z = np.asarray(z, float) if T: if P: raise ValueError("may specify either T or P, not both") P, *args = self.solve_Px(z, T, gas_conversion) elif P: T, *args = self.solve_Tx(z, P, gas_conversion) else: raise ValueError("must specify either T or P") if gas_conversion: return ReactiveDewPointValues(T, P, self.IDs, z, *args) else: return DewPointValues(T, P, self.IDs, z, *args)
[docs] def solve_Tx(self, z, P, gas_conversion=None): """ Dew point given composition and pressure. Parameters ---------- z : ndarray Molar composition. P : float Pressure [Pa]. Returns ------- T : float Dew point temperature [K]. x : numpy.ndarray Liquid phase molar composition. Examples -------- >>> import thermosteam as tmo >>> import numpy as np >>> chemicals = tmo.Chemicals(['Water', 'Ethanol'], cache=True) >>> tmo.settings.set_thermo(chemicals) >>> DP = tmo.equilibrium.DewPoint(chemicals) >>> tmo.docround(DP.solve_Tx(z=np.array([0.5, 0.5]), P=101325)) (357.4419, array([0.847, 0.153])) """ positives = z > 0. N = positives.sum() if N == 0: raise ValueError('no positive components present') if N == 1: chemical = self.chemicals[fn.first_true_index(positives)] T = chemical.Tsat(P, check_validity=False) if P <= chemical.Pc else chemical.Tc x = z.copy() return T, fn.normalize(x) elif gas_conversion is None: f = self._T_error z_norm = z/z.sum() zP = z * P T_guess, x = self._Tx_ideal(zP) args = (P, z_norm, zP, x) try: T = flx.aitken_secant(f, T_guess, T_guess + 1e-3, self.T_tol, 5e-12, args, maxiter=self.maxiter, checkiter=False) except RuntimeError: Tmin = self.Tmin Tmax = self.Tmax T = flx.IQ_interpolation(f, Tmin, Tmax, f(Tmin, *args), f(Tmax, *args), T_guess, self.T_tol, 5e-12, args, checkiter=False, checkbounds=False, maxiter=self.maxiter) return T, fn.normalize(x) else: f = self._T_error_reactive z_norm = z / z.sum() x = z_norm.copy() dz = z_norm.copy() zP = z * P T_guess, y = self._Tx_ideal(zP) args = (P, z_norm, dz, y, x, gas_conversion) try: T = flx.aitken_secant(f, T_guess, T_guess + 1e-3, self.T_tol, 5e-12, args, checkiter=False) except RuntimeError: Tmin = self.Tmin; Tmax = self.Tmax T = flx.IQ_interpolation(f, Tmin, Tmax, f(Tmin, *args), f(Tmax, *args), T_guess, self.T_tol, 5e-12, args, checkiter=False, checkbounds=False) return T, dz, fn.normalize(y), x
[docs] def solve_Px(self, z, T, gas_conversion=None): """ Dew point given composition and temperature. Parameters ---------- z : ndarray Molar composition. T : float Temperature (K). Returns ------- P : float Dew point pressure (Pa). x : ndarray Liquid phase molar composition. Examples -------- >>> import thermosteam as tmo >>> import numpy as np >>> chemicals = tmo.Chemicals(['Water', 'Ethanol'], cache=True) >>> tmo.settings.set_thermo(chemicals) >>> DP = tmo.equilibrium.DewPoint(chemicals) >>> tmo.docround(DP.solve_Px(z=np.array([0.5, 0.5]), T=352.28)) (82480.7311, array([0.851, 0.149])) """ positives = z > 0. N = positives.sum() if N == 0: raise ValueError('no positive components present') if N == 1: chemical = self.chemicals[fn.first_true_index(z)] P = chemical.Psat(T) if T <= chemical.Tc else chemical.Pc x = z.copy() return P, fn.normalize(x) elif gas_conversion is None: z_norm = z / z.sum() Psats = np.array([i(T) for i in self.Psats], dtype=float) z_over_Psats = z / Psats P_guess, x = self._Px_ideal(z_over_Psats) args = (T, z_norm, z_over_Psats, Psats, x) f = self._P_error try: P = flx.aitken_secant(f, P_guess, P_guess-10, self.P_tol, 5e-12, args, checkiter=False, maxiter=self.maxiter) except RuntimeError: Pmin = self.Pmin Pmax = self.Pmax P = flx.IQ_interpolation(f, Pmin, Pmax, f(Pmin, *args), f(Pmax, *args), P_guess, self.P_tol, 5e-12, args, checkiter=False, checkbounds=False, maxiter=self.maxiter) return P, fn.normalize(x) else: f = self._P_error_reactive z_norm = z / z.sum() y = z_norm.copy() dz = z_norm.copy() Psats = np.array([i(T) for i in self.Psats], dtype=float) z_over_Psats = z / Psats P_guess, x = self._Px_ideal(z_over_Psats) args = (T, Psats, z_norm, dz, y, x, gas_conversion) try: P = flx.aitken_secant(f, P_guess, P_guess-1, self.P_tol, 1e-9, args, checkiter=False) except RuntimeError: Pmin = self.Pmin; Pmax = self.Pmax P = flx.IQ_interpolation(f, Pmin, Pmax, f(Pmin, *args), f(Pmax, *args), P_guess, self.P_tol, 5e-12, args, checkiter=False, checkbounds=False) return P, dz, fn.normalize(y), x
def __repr__(self): chemicals = ", ".join([i.ID for i in self.chemicals]) return f"{type(self).__name__}([{chemicals}])"