Source code for thermosteam.equilibrium.lle

# -*- coding: utf-8 -*-
# BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules
# Copyright (C) 2020-2023, Yoel Cortes-Pena <yoelcortes@gmail.com>
# 
# This module is under the UIUC open-source license. See 
# github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt
# for license details.
"""
"""
from numba import njit
from ..utils import Cache
from .equilibrium import Equilibrium
from ..exceptions import NoEquilibrium
from .binary_phase_fraction import phase_fraction
from scipy.optimize import shgo, differential_evolution
import flexsolve as flx
import numpy as np

__all__ = ('LLE', 'LLECache')

# TODO: SUBMIT ISSUE TO NUMBA
@njit(cache=True)
def liquid_activities(mol_L, T, f_gamma, gamma_args):
    total_mol_L = mol_L.sum()
    x = mol_L / total_mol_L
    gamma = f_gamma(x, T, *gamma_args)
    xgamma = x * gamma
    return xgamma

@njit(cache=True)
def gibbs_free_energy_of_liquid(mol_L, xgamma):
    xgamma[xgamma <= 0] = 1
    g_mix = (mol_L * np.log(xgamma)).sum()
    return g_mix

@njit(cache=True)
def lle_objective_function(mol_L, mol, T, f_gamma, gamma_args):
    mol_l = mol - mol_L
    if mol_l.sum() == 0.:
        g_mix_l = 0.
    else:
        xgamma_l = liquid_activities(mol_l, T, f_gamma, gamma_args)
        g_mix_l = gibbs_free_energy_of_liquid(mol_l, xgamma_l)
    if mol_L.sum() == 0.:
        g_mix_L = 0.
    else:
        xgamma_L = liquid_activities(mol_L, T, f_gamma, gamma_args)
        g_mix_L = gibbs_free_energy_of_liquid(mol_L, xgamma_L)
    g_mix = g_mix_l + g_mix_L
    return g_mix

@njit(cache=True)
def psuedo_equilibrium_inner_loop(logKgammay, z, T, n, f_gamma, gamma_args, phi):
    logKgammay_new = logKgammay.copy()
    K = np.exp(logKgammay[:n])
    x = z/(1. + phi * (K - 1.))
    x = x / x.sum()
    gammay = logKgammay[n:]
    gammax = f_gamma(x, T, *gamma_args)
    K = gammax / gammay 
    y = K * x
    y /= y.sum()
    gammay = f_gamma(y, T, *gamma_args)
    K = gammax / gammay
    logKgammay_new[n:] = np.log(K)
    logKgammay_new[n:] = gammay
    return logKgammay_new

def pseudo_equilibrium_outer_loop(logKgammayphi, z, T, n, f_gamma, gamma_args, inner_loop_options):
    logKgammayphi_new = logKgammayphi.copy()
    # breakpoint()
    logKgammay = logKgammayphi[:-1]
    phi = logKgammayphi[-1]
    args=(z, T, n, f_gamma, gamma_args)
    logKgammay = flx.aitken(
        psuedo_equilibrium_inner_loop, logKgammay, 
        args=(*args, phi), **inner_loop_options,
    )
    K = np.exp(logKgammay[:n])
    try:
        phi = phase_fraction(z, K, phi)
    except (ZeroDivisionError, FloatingPointError):
        raise NoEquilibrium
    if np.isnan(phi): raise NoEquilibrium
    if phi > 1: phi = 1 - 1e-16
    if phi < 0: phi = 1e-16
    logKgammayphi_new[:-1] = logKgammay
    logKgammayphi_new[-1] = phi
    return logKgammayphi_new

def pseudo_equilibrium(K, phi, z, T, n, f_gamma, gamma_args, inner_loop_options, outer_loop_options):
    phi = phase_fraction(z, K, phi)
    try:
        x = z/(1. + phi * (K - 1.))
    except:
        x = np.ones(n)
    x /= x.sum()
    y = K * x
    logKgammayphi = np.zeros(2*n + 1)
    logKgammayphi[:n] = np.log(K)
    logKgammayphi[n:-1] = f_gamma(y, T, *gamma_args)
    logKgammayphi[-1] = phi
    try:
        logKgammayphi = flx.aitken(
            pseudo_equilibrium_outer_loop, logKgammayphi,
            args=(z, T, n, f_gamma, gamma_args, inner_loop_options),
            **outer_loop_options,
        )
    except NoEquilibrium:
        return z
    K = np.exp(logKgammayphi[:n])
    phi = logKgammayphi[-1]
    return z/(1. + phi * (K - 1.)) * (1 - phi)

[docs] class LLE(Equilibrium, phases='lL'): """ Create a LLE object that performs liquid-liquid equilibrium when called. The SHGO (simplicial homology global optimization) alogorithm [1]_ is used to find the solution that globally minimizes the gibb's free energy of both phases. Parameters ---------- imol=None : :class:`~thermosteam.indexer.MaterialIndexer`, optional Molar chemical phase data is stored here. thermal_condition=None : :class:`~thermosteam.ThermalCondition`, optional The temperature and pressure used in calculations are stored here. thermo=None : :class:`~thermosteam.Thermo`, optional Themodynamic property package for equilibrium calculations. Defaults to `thermosteam.settings.get_thermo()`. Examples -------- >>> from thermosteam import indexer, equilibrium, settings >>> settings.set_thermo(['Water', 'Ethanol', 'Octane', 'Hexane'], cache=True) >>> imol = indexer.MolarFlowIndexer( ... l=[('Water', 304), ('Ethanol', 30)], ... L=[('Octane', 40), ('Hexane', 1)] ... ) >>> lle = equilibrium.LLE(imol) >>> lle(T=360, top_chemical='Octane') >>> lle LLE(imol=MolarFlowIndexer( L=[('Water', 2.552), ('Ethanol', 2.167), ('Octane', 39.92), ('Hexane', 0.9886)], l=[('Water', 301.4), ('Ethanol', 27.83), ('Octane', 0.07738), ('Hexane', 0.01141)]), thermal_condition=ThermalCondition(T=360.00, P=101325)) References ---------- .. [1] Endres, SC, Sandrock, C, Focke, WW (2018) “A simplicial homology algorithm for lipschitz optimisation”, Journal of Global Optimization. """ __slots__ = ('composition_cache_tolerance', 'temperature_cache_tolerance', 'method', '_z_mol', '_T', '_lle_chemicals', '_IDs', '_K', '_phi' ) default_method = 'pseudo equilibrium' shgo_options = dict(f_tol=1e-6, minimizer_kwargs=dict(f_tol=1e-6)) differential_evolution_options = {'seed': 0, 'popsize': 12, 'tol': 1e-6} pseudo_equilibrium_outer_loop_options = dict( xtol=1e-12, maxiter=100, checkiter=False, checkconvergence=False, convergenceiter=10, ) pseudo_equilibrium_inner_loop_options = dict( xtol=1e-9, maxiter=20, checkiter=False, checkconvergence=False, convergenceiter=5, ) default_composition_cache_tolerance = 1e-5 default_temperature_cache_tolerance = 1e-3 def __init__(self, imol=None, thermal_condition=None, thermo=None, composition_cache_tolerance=None, temperature_cache_tolerance=None, method=None): super().__init__(imol, thermal_condition, thermo) self.composition_cache_tolerance = ( self.default_composition_cache_tolerance if composition_cache_tolerance is None else composition_cache_tolerance ) self.temperature_cache_tolerance = ( self.default_temperature_cache_tolerance if temperature_cache_tolerance is None else temperature_cache_tolerance ) self.method = self.default_method if method is None else method self._lle_chemicals = None self._K = None self._phi = None
[docs] def __call__(self, T, P=None, top_chemical=None, update=True, use_cache=True, single_loop=False): """ Perform liquid-liquid equilibrium. Parameters ---------- T : float Operating temperature [K]. P : float, optional Operating pressure [Pa]. top_chemical : str, optional Identifier of chemical that will be favored in the "LIQUID" phase. update : bool, optional Whether to update material flows, temperature and pressure. If False, returns the chemicals in liquid-liquid equilibrium, partition coefficients, and phase fraction. """ if update: thermal_condition = self._thermal_condition thermal_condition.T = T if P: thermal_condition.P = P imol = self._imol mol, index, lle_chemicals = self.get_liquid_mol_data() F_mol = mol.sum() if F_mol and len(lle_chemicals) > 1: z_mol = mol = mol / F_mol # Normalize first use_cache = ( use_cache and self._lle_chemicals == lle_chemicals and T - self._T < self.temperature_cache_tolerance and (self._z_mol - z_mol < self.composition_cache_tolerance).all() ) if use_cache: K = self._K self._phi = phi = phase_fraction(z_mol, K, self._phi) if phi >= 1.: mol_l = mol mol_L = 0. * mol else: y = z_mol * K / (phi * K + (1 - phi)) mol_l = y * phi mol_L = mol - mol_l else: if self._lle_chemicals != lle_chemicals: self._K = None self._phi = None mol_L = self.solve_lle_liquid_mol(mol, T, lle_chemicals, single_loop) mol_l = mol - mol_L if top_chemical: MW = self.chemicals.MW[index] mass_L = mol_L * MW mass_l = mol_l * MW IDs = {i.ID: n for n, i in enumerate(lle_chemicals)} try: top_chemical_index = IDs[top_chemical] except: pass else: ML = mass_L.sum() Ml = mass_l.sum() if ML and Ml: C_L = mass_L[top_chemical_index] / ML C_l = mass_l[top_chemical_index] / Ml if C_L < C_l: mol_l, mol_L = mol_L, mol_l elif Ml: mol_l, mol_L = mol_L, mol_l F_mol_l = mol_l.sum() F_mol_L = mol_L.sum() if not F_mol_L: self._K = np.zeros_like(mol) self._phi = 0. elif not F_mol_l: self._K = 1e16 * np.ones_like(mol) self._phi = 1. else: x_mol_l = mol_l / F_mol_l x_mol_L = mol_L / F_mol_L x_mol_l[x_mol_l < 1e-16] = 1e-16 K = x_mol_L / x_mol_l self._K = K self._phi = F_mol_L / (F_mol_L + F_mol_l) self._lle_chemicals = lle_chemicals self._z_mol = z_mol self._T = T if not update: return self._lle_chemicals, self._K, self._phi imol['l'][index] = mol_l * F_mol imol['L'][index] = mol_L * F_mol elif not update: mol_l = mol mol_L = np.zeros_like(mol_l) if top_chemical: MW = self.chemicals.MW[index] IDs = {i.ID: n for n, i in enumerate(lle_chemicals)} try: top_chemical_index = IDs[top_chemical] except: pass else: C_L = mol_L[top_chemical_index] C_l = mol_l[top_chemical_index] if C_L < C_l: mol_l, mol_L = mol_L, mol_l F_mol_L = mol_L.sum() if F_mol_L: K = 1e16 * np.ones_like(mol) phi = 1. else: K = np.zeros_like(mol) phi = 0. return lle_chemicals, K, phi
def solve_lle_liquid_mol(self, mol, T, lle_chemicals, single_loop): gamma = self.thermo.Gamma(lle_chemicals) indices = np.argsort(mol * np.array([i.MW for i in lle_chemicals])) method = self.method n = mol.size if method == 'pseudo equilibrium': if self._K is not None and 0 < self._phi < 1: K = self._K phi = self._phi else: x = mol.copy() y = mol.copy() a = indices[-1] b = indices[-2] x[a] = 0.99 y[a] = 1e-3 x[b] = 1e-3 y[b] = 0.99 x /= x.sum() y /= y.sum() K = gamma(y, T) / gamma(x, T) phi = 0.5 if single_loop: z = mol f_gamma = gamma.f gamma_args = gamma.args phi = phase_fraction(z, K, phi) try: x = z/(1. + phi * (K - 1.)) except: x = np.ones(n) x /= x.sum() y = K * x Kgammayphi = np.zeros(2*n + 1) Kgammayphi[:n] = K Kgammayphi[n:-1] = f_gamma(y, T, *gamma_args) Kgammayphi[-1] = phi Kgammay = Kgammayphi[:-1] phi = Kgammayphi[-1] args=(z, T, n, f_gamma, gamma_args) Kgammay = flx.fixed_point( psuedo_equilibrium_inner_loop, Kgammay, args=(*args, phi), **self.pseudo_equilibrium_inner_loop_options, ) K = Kgammay[:n] try: phi = phase_fraction(z, K, phi) except (ZeroDivisionError, FloatingPointError): return z if np.isnan(phi): return z if phi > 1: phi = 1 - 1e-16 if phi < 0: phi = 1e-16 return z/(1. + phi * (K - 1.)) * (1 - phi) else: return pseudo_equilibrium( K, phi, mol, T, n, gamma.f, gamma.args, self.pseudo_equilibrium_inner_loop_options, self.pseudo_equilibrium_outer_loop_options, ) index = indices[-1] args = (mol, T, gamma.f, gamma.args) bounds = np.zeros([n, 2]) bounds[:, 1] = mol bounds[index, 1] = 0.5 * mol[index] # Remove symmetry if method == 'shgo': result = shgo( lle_objective_function, bounds, args, options=self.shgo_options ) if not result.success or (result.x == 0.).all(): result = differential_evolution( lle_objective_function, bounds, args, **self.differential_evolution_options ) return result.x elif method == 'differential evolution': result = differential_evolution( lle_objective_function, bounds, args, **self.differential_evolution_options ) return result.x else: raise ValueError(f"invalid method {repr(method)}") def get_liquid_mol_data(self): # Get flow rates imol = self._imol imol['L'] = mol = imol['l'] + imol['L'] imol['l'] = 0 index = self.chemicals.get_lle_indices(mol.nonzero_keys()) mol = mol[index] chemicals = self.chemicals.tuple lle_chemicals = [chemicals[i] for i in index] return mol, index, lle_chemicals
class LLECache(Cache): load = LLE del Cache, njit, Equilibrium