Source code for thermosteam.reaction._reaction

# -*- coding: utf-8 -*-
# BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules
# Copyright (C) 2020, Yoel Cortes-Pena, <yoelcortes@gmail.com>, Yalin Li, <mailto.yalin.li@gmail.com>
# 
# This module is under the UIUC open-source license. See 
# github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt
# for license details.
"""
"""
import thermosteam as tmo
from thermosteam import functional as fn
import flexsolve as flx
from chemicals import elements
from warnings import warn
from ..base import SparseVector, SparseArray, DictionaryView
from . import (
    _parse as prs,
    _xparse as xprs,
)
from ..utils import chemicals_user, thermo_user, AbstractMethod
from .._phase import NoPhase, phase_tuple
from ..indexer import ChemicalIndexer, MaterialIndexer
from ..exceptions import InfeasibleRegion
import numpy as np
import pandas as pd

__all__ = (
    'Reaction', 'ReactionItem', 'ReactionSet', 
    'ParallelReaction', 'SeriesReaction', 'ReactionSystem',
    'Rxn', 'RxnS', 'RxnI', 'PRxn', 'SRxn', 'RxnSys',
    'KineticReaction', 'KineticConversion',
    'KRxn',
)

def get_stoichiometric_string(stoichiometry, phases, chemicals):
    if phases:
        return xprs.get_stoichiometric_string(stoichiometry,
                                              phases,
                                              chemicals)
    else:
        return prs.get_stoichiometric_string(stoichiometry, 
                                             chemicals)

def set_reaction_basis(rxn, basis):
    if basis != rxn._basis:
        if basis == 'wt':
            if isinstance(rxn, ReactionSet):
                for i in rxn._stoichiometry: i *= rxn.MWs
            else:
                rxn._stoichiometry *= rxn.MWs
        elif basis == 'mol':
            if isinstance(rxn, ReactionSet):
                for i in rxn._stoichiometry: i /= rxn.MWs
            else:
                rxn._stoichiometry /= rxn.MWs
        else:
            raise ValueError("basis must be either by 'wt' or by 'mol'")
        rxn._rescale()
        rxn._basis = basis

def as_material_array(material, basis, phases, chemicals):
    """
    Returns the material flows as a sparse array (or vector),
    the old configuration if chemicals changed, whether the sparse data dictionary
    is wrapped, and whether material flows is a copy.
    
    """
    isa = isinstance
    if isa(material, tmo.Stream):
        if phases and material.phases != phases:
            raise ValueError("reaction and stream phases do not match")
        if material.chemicals is chemicals:
            config = None
        else:
            config = material.chemicals, material.imol.reset_chemicals(chemicals)
        if basis == 'mol':
            return material._imol.data, config, None
        elif basis == 'wt':
            original = material.imass.data
            return original.copy(), config, original
        else:
            raise ValueError("basis must be either 'mol' or 'wt'")
    elif material.__class__ in (SparseVector, SparseArray):
        ndim = material.ndim
        if ndim == 1:
            if isinstance(material.dct, DictionaryView):  
                return (material.copy(), None, material)
            else:
                return (material, None, None)
        elif ndim == 2:
            for i in material.rows:
                if isinstance(i.dct, DictionaryView):
                    return material.copy(), None, material
            else:
                return material.copy(), None, None
        else:
            raise Exception('unknown error')
    elif phases:
        return SparseArray(material), None, material
    else:
        return SparseVector(material), None, material

# %% Extent of reaction (stoichiometric)

class Conversion:
    __slots__ = ('reaction', 'index')
    
    def __init__(self, reaction):
        self.reaction = reaction
        self.index = None
        
    def set_chemicals(self, chemicals):
        self.index = self.reaction.chemicals.indices([i.ID for i in chemicals])
        
    def __call__(self, material=None, T=None, P=None, phase=None):
        if self.index is None:
            return self.reaction.conversion(material)
        else:
            flow = SparseVector.from_size(self.reaction.chemicals.size)
            flow[self.index] = material
            return self.reaction.conversion(material)


[docs] @chemicals_user class Reaction: """ Create a Reaction object which defines a stoichiometric reaction and conversion. A Reaction object is capable of reacting the material flow rates of a :class:`thermosteam.Stream` object. Parameters ---------- reaction : dict or str A dictionary of stoichiometric coefficients or a stoichiometric equation written as: i1 R1 + ... + in Rn -> j1 P1 + ... + jm Pm reactant : str, optional ID of reactant chemical. Defaults to reactant if only one available. X : float, optional Reactant conversion (fraction). Defaults to 1. chemicals : Chemicals, optional Chemicals corresponding to each entry in the stoichiometry array. Defaults to settings.chemicals. basis: {'mol', 'wt'}, optional Basis of reaction. Defaults to 'mol'. Other Parameters ---------------- check_mass_balance=False: bool Whether to check if mass is not created or destroyed. correct_mass_balance=False: bool Whether to make sure mass is not created or destroyed by varying the reactant stoichiometric coefficient. check_atomic_balance=False: bool Whether to check if stoichiometric balance by atoms cancel out. correct_atomic_balance=False: bool Whether to correct the stoichiometry according to the atomic balance. Notes ----- A reaction object can react either a stream or an array. When a stream is passed, it reacts either the mol or mass flow rate according to the basis of the reaction object. When an array is passed, the array elements are reacted regardless of what basis they are associated with. Warning ------- Negative conversions and conversions above 1.0 are fair game (allowed), but may lead to odd/infeasible values when reacting a stream. Examples -------- Electrolysis of water to molecular hydrogen and oxygen: >>> import thermosteam as tmo >>> chemicals = tmo.Chemicals(['H2O', 'H2', 'O2'], cache=True) >>> tmo.settings.set_thermo(chemicals) >>> reaction = tmo.Reaction('2H2O,l -> 2H2,g + O2,g', reactant='H2O', X=0.7) >>> reaction.show() # Note that the default basis is by 'mol' Reaction (by mol): stoichiometry reactant X[%] H2O,l -> H2,g + 0.5 O2,g H2O,l 70.00 >>> reaction.reactant # The reactant is a tuple of phase and chemical ID ('l', 'H2O') >>> feed = tmo.Stream('feed', H2O=100) >>> feed.phases = ('g', 'l') # Gas and liquid phases must be available >>> reaction(feed) # Call to run reaction on molar flow >>> feed.show() # Notice how 70% of water was converted to product MultiStream: feed phases: ('g', 'l'), T: 298.15 K, P: 101325 Pa flow (kmol/hr): (g) H2 70 O2 35 (l) H2O 30 Let's change to a per 'wt' basis: >>> reaction.basis = 'wt' >>> reaction.show() Reaction (by wt): stoichiometry reactant X[%] H2O,l -> 0.112 H2,g + 0.888 O2,g H2O,l 70.00 Although we changed the basis, the end result is the same if we pass a stream: >>> feed = tmo.Stream('feed', H2O=100) >>> feed.phases = ('g', 'l') >>> reaction(feed) # Call to run reaction on mass flow >>> feed.show() # Notice how 70% of water was converted to product MultiStream: feed phases: ('g', 'l'), T: 298.15 K, P: 101325 Pa flow (kmol/hr): (g) H2 70 O2 35 (l) H2O 30 If chemicals phases are not specified, Reaction objects can react a any single phase Stream object (regardless of phase): >>> reaction = tmo.Reaction('2H2O -> 2H2 + O2', reactant='H2O', X=0.7) >>> feed = tmo.Stream('feed', H2O=100, phase='g') >>> reaction(feed) >>> feed.show() Stream: feed phase: 'g', T: 298.15 K, P: 101325 Pa flow (kmol/hr): H2O 30 H2 70 O2 35 Alternatively, it's also possible to react an array (instead of a stream): >>> import numpy as np >>> array = np.array([100., 0. , 0.]) >>> reaction(array) >>> array array([30., 70., 35.]) Reaction objects with the same reactant can be added together: >>> tmo.settings.set_thermo(['Glucose', 'Ethanol', 'H2O', 'O2', 'CO2']) >>> fermentation = tmo.Reaction('Glucose + O2 -> Ethanol + CO2', reactant='Glucose', X=0.7) >>> combustion = tmo.Reaction('Glucose + O2 -> H2O + CO2', reactant='Glucose', X=0.2) >>> mixed_reaction = fermentation + combustion >>> mixed_reaction.show() Reaction (by mol): stoichiometry reactant X[%] Glucose + O2 -> 0.778 Ethanol + 0.222 H2O + CO2 Glucose 90.00 Note how conversions are added and the stoichiometry rescales to a per reactant basis. Conversely, reaction objects may be subtracted as well: >>> combustion = mixed_reaction - fermentation >>> combustion.show() Reaction (by mol): stoichiometry reactant X[%] Glucose + O2 -> H2O + CO2 Glucose 20.00 When a Reaction object is multiplied (or divided), a new Reaction object with the conversion multiplied (or divided) is returned: >>> combustion_multiplied = 2 * combustion >>> combustion_multiplied.show() Reaction (by mol): stoichiometry reactant X[%] Glucose + O2 -> H2O + CO2 Glucose 40.00 >>> fermentation_divided = fermentation / 2 >>> fermentation_divided.show() Reaction (by mol): stoichiometry reactant X[%] Glucose + O2 -> Ethanol + CO2 Glucose 35.00 """ _rate = AbstractMethod phases = MaterialIndexer.phases __slots__ = ( '_stream', '_basis', '_phases', '_chemicals', '_reactant_index', '_stoichiometry', '_X' ) def __init__(self, reaction, reactant=None, X=1., chemicals=None, basis='mol', *, phases=None, check_mass_balance=False, check_atomic_balance=False, correct_atomic_balance=False, correct_mass_balance=False): if basis in ('wt', 'mol'): self._basis = basis else: raise ValueError("basis must be either by 'wt' or by 'mol'") self.X = X chemicals = self._load_chemicals(chemicals) if reaction: self._phases = phases = phase_tuple(phases) if phases else xprs.get_phases(reaction) if phases: self._stoichiometry = stoichiometry = xprs.get_stoichiometric_array(reaction, phases, chemicals) if reactant is None: _, reactants_index = stoichiometry.negative_index() N_reactants = len(reactants_index) if N_reactants == 1: reactant_index = reactants_index[0] else: raise ValueError('must pass reactant when multiple reactants are involved') else: reactant_index = chemicals.index(reactant) for phase_index, x in enumerate(stoichiometry[:, reactant_index]): if x: break self._reactant_index = (phase_index, reactant_index) else: self._stoichiometry = prs.get_stoichiometric_array(reaction, chemicals) if reactant is None: reactants_index, = self._stoichiometry.negative_index() N_reactants = len(reactants_index) if N_reactants == 1: self._reactant_index = reactants_index[0] else: raise ValueError('must pass reactant when multiple reactants are involved') else: self._reactant_index = chemicals.index(reactant) self._rescale() if correct_atomic_balance: self.correct_atomic_balance() else: if correct_mass_balance: self.correct_mass_balance() elif check_mass_balance: self.check_mass_balance() if check_atomic_balance: self.check_atomic_balance() else: self._phases = () self._stoichiometry = SparseVector.from_size(chemicals.size) self._reactant_index = chemicals.index(reactant) def backwards(self, reactant=None, X=None): new = self.copy() if reactant is None: if new._phases: _, reactants_index = new._stoichiometry.positive_index() N_reactants = len(reactants_index) if N_reactants == 1: new._reactant_index = reactants_index[0] else: raise ValueError('must pass reactant when multiple reactants are involved') else: reactants_index, = new._stoichiometry.positive_index() N_reactants = len(reactants_index) if N_reactants == 1: self._reactant_index = reactants_index[0] else: raise ValueError('must pass reactant when multiple reactants are involved') else: new._reactant_index = new.chemicals.index(reactant) if X is not None: new.X = X new._rescale() return new @property def reaction_chemicals(self): """Return all chemicals involved in the reaction.""" keys = sorted(self._stoichiometry.nonzero_keys()) chemicals = self.chemicals return [chemicals[i] for i in keys] def reset_chemicals(self, chemicals): if self._chemicals is chemicals: return phases = self.phases stoichiometry = self._stoichiometry reactant = self.reactant if phases: M, N = stoichiometry.shape new_stoichiometry = SparseArray.from_shape([M, chemicals.size]) IDs = self.chemicals.IDs for (i, j), k in stoichiometry.nonzero_items(): new_stoichiometry[i, chemicals.index(IDs[j])] = k phase, reactant = reactant reactant_index = phases.index(phase), chemicals.index(reactant) else: new_stoichiometry = SparseVector.from_size(chemicals.size) IDs = self.chemicals.IDs for i, j in stoichiometry.nonzero_items(): new_stoichiometry[chemicals.index(IDs[i])] = j reactant_index = chemicals.index(reactant) self._chemicals = chemicals self._stoichiometry = new_stoichiometry self._reactant_index = reactant_index if hasattr(self, '_stream'): del self._stream
[docs] def copy(self, basis=None): """Return copy of Reaction object.""" copy = self.__new__(self.__class__) copy._basis = self._basis copy._phases = self._phases copy._stoichiometry = self._stoichiometry.copy() copy._reactant_index = self._reactant_index copy._chemicals = self._chemicals copy._X = self._X if basis: set_reaction_basis(copy, basis) return copy
[docs] def has_reaction(self): """Return whether any reaction takes place.""" return bool(self.X and self.stoichiometry.any())
def _math_compatible_reaction(self, rxn, copy=True): basis = self._basis if copy or basis != rxn._basis: rxn = rxn.copy(basis) if self.chemicals is not rxn.chemicals: raise ValueError('chemicals must be the same to add/subtract reactions') if self._phases != rxn._phases: raise ValueError('phases must be the same to add/subtract reactions') if self._reactant_index != rxn._reactant_index: raise ValueError('reactants must be the same to add/subtract reactions') return rxn def __radd__(self, rxn): return self + rxn def __add__(self, rxn): if rxn == 0 or rxn is None or not rxn.has_reaction(): return self.copy() rxn = self._math_compatible_reaction(rxn) stoichiometry = self._stoichiometry * self.X + rxn._stoichiometry * rxn.X rxn._stoichiometry = stoichiometry / -(stoichiometry[rxn._reactant_index]) rxn.X = self.X + rxn.X return rxn def __iadd__(self, rxn): if rxn == 0 or rxn is None or not rxn.has_reaction(): return self rxn = self._math_compatible_reaction(rxn, copy=False) stoichiometry = self._stoichiometry * self.X + rxn._stoichiometry * rxn.X self._stoichiometry = stoichiometry / -(stoichiometry[self._reactant_index]) self.X = self.X + rxn.X return self def __mul__(self, num): new = self.copy() new.X *= float(num) return new def __rmul__(self, num): return self.__mul__(num) def __imul__(self, num): self.X *= num return self def __truediv__(self, num): return self.__mul__(1./num) def __itruediv__(self, num): return self.__imul__(1./num) def __neg__(self): new = self.copy() new.X *= -1. return new def __sub__(self, rxn): if rxn == 0 or rxn is None or not rxn.has_reaction(): return self rxn = self._math_compatible_reaction(rxn) stoichiometry = self._stoichiometry*self.X - rxn._stoichiometry*rxn.X rxn._stoichiometry = stoichiometry/-(stoichiometry[rxn._reactant_index]) rxn.X = self.X - rxn.X return rxn def __isub__(self, rxn): if rxn == 0 or rxn is None or not rxn.has_reaction(): return self rxn = self._math_compatible_reaction(rxn, copy=False) stoichiometry = self._stoichiometry*self.X + rxn._stoichiometry*rxn.X self._stoichiometry = stoichiometry/-(stoichiometry[self._reactant_index]) self.X = self.X - rxn.X return self def conversion(self, material, T=None, P=None, phase=None, time=None): values, config, original = as_material_array( material, self._basis, self._phases, self.chemicals ) conversion = self._conversion(values) if config: material._imol.reset_chemicals(*config) return conversion def conversion_handle(self, stream): return Conversion(self) def __call__(self, material, T=None, P=None, phase=None, time=None): values, config, original = as_material_array( material, self._basis, self._phases, self.chemicals ) self._reaction(values) if tmo.reaction.CHECK_FEASIBILITY: has_negatives = values.has_negatives() if has_negatives: negative_index = values.negative_index() negative_values = values[negative_index] if negative_values.sum() < -1e-12: X_net = self.X_net() for ID, X in X_net.items(): if X > 1.: RuntimeError(f"conversion of '{ID}' is over 100%") negative_index = values.negative_keys() chemicals = self.chemicals.tuple IDs = [chemicals[i].ID for i in negative_index] if len(IDs) == 1: IDs = repr(IDs[0]) raise InfeasibleRegion(f'conversion of {IDs} is over 100%; reaction conversion') else: values[negative_index] = 0. else: fn.remove_negligible_negative_values(values) if original is not None: original[:] = values if config: material._imol.reset_chemicals(*config)
[docs] def force_reaction(self, material): """React material ignoring feasibility checks.""" values, config, original = as_material_array( material, self._basis, self._phases, self.chemicals ) self._reaction(values) fn.remove_negligible_negative_values(values) if original is not None: original[:] = values if config: material._imol.reset_chemicals(*config)
[docs] def reactant_demand(self, reactant, basis=None, reactant_demand=None): """ Return or set the demand of any reactant (i.e., the reactant's stoichiometric coefficient multiplied by the conversion). If this function is used to set the reactant yield, the conversion is updated and the stoichiometric coefficient is kept constant. Parameters ---------- reactant : str, optional ID of the reactant chemical. basis : str, optional Can be 'mol' or 'wt'. Defaults to the Reaction object's basis. reactant_demand: float, optional New reactant demand as a number between 0 and 1. If none given, the reactant demand is returned. """ if reactant_demand is None: return -self.product_yield(reactant, basis, reactant_demand) else: self.product_yield(reactant, basis, -reactant_demand)
[docs] def product_yield(self, product, basis=None, product_yield=None): """ Return or set the yield of a product per reactant (i.e., the product's stoichiometric coefficient multiplied by the conversion). If this function is used to set the product yield, the conversion is updated and the stoichiometric coefficient is kept constant. Parameters ---------- product : str, optional ID of the product chemical. basis : str, optional Can be 'mol' or 'wt'. Defaults to the Reaction object's basis. product_yield : float, optional New product yield as a number between 0 and 1. If none given, the product yield is returned. """ stoichiometry = self._stoichiometry if stoichiometry.ndim == 2: stoichiometry = stoichiometry.sum(axis=0) reactant_index = self._reactant_index[1] else: reactant_index = self._reactant_index product_index = self.chemicals.index(product) product_coefficient = stoichiometry[product_index] if product_yield is None: product_yield = product_coefficient * self.X if basis and self._basis != basis: chemicals_tuple = self.chemicals.tuple MW_reactant = chemicals_tuple[reactant_index].MW MW_product = chemicals_tuple[product_index].MW if basis == 'wt': product_yield *= MW_product / MW_reactant assert product_yield <= 1. elif basis == 'mol': product_yield *= MW_reactant / MW_product else: raise ValueError("basis must be either 'wt' or 'mol'; " f"not {repr(basis)}") return product_yield else: X = product_yield / product_coefficient if basis and self._basis != basis: chemicals_tuple = self.chemicals.tuple MW_reactant = chemicals_tuple[reactant_index].MW MW_product = chemicals_tuple[product_index].MW if basis == 'wt': X *= MW_reactant / MW_product elif basis == 'mol': X *= MW_product / MW_reactant else: raise ValueError("basis must be either 'wt' or 'mol'; " f"not {repr(basis)}") if abs(X) > 1.: raise ValueError("product yield or reactant demand is above the maximum theoretical") self.X = X
[docs] def adiabatic_reaction(self, stream, Q=0): """ React stream material adiabatically, accounting for the change in enthalpy due to the heat of reaction. Examples -------- Note how the stream temperature changes after each reaction due to the heat of reaction. Adiabatic combustion of hydrogen: >>> import thermosteam as tmo >>> chemicals = tmo.Chemicals(['H2', 'O2', 'H2O'], cache=True) >>> tmo.settings.set_thermo(chemicals) >>> reaction = tmo.Reaction('2H2 + O2 -> 2H2O', reactant='H2', X=0.7) >>> s1 = tmo.Stream('s1', H2=10, O2=20, H2O=1000, T=373.15, phase='g') >>> s2 = tmo.Stream('s2') >>> s2.copy_like(s1) # s1 and s2 are the same >>> s1.show() # Before reaction Stream: s1 phase: 'g', T: 373.15 K, P: 101325 Pa flow (kmol/hr): H2 10 O2 20 H2O 1e+03 >>> reaction.show() Reaction (by mol): stoichiometry reactant X[%] H2 + 0.5 O2 -> H2O H2 70.00 >>> reaction(s1) >>> s1.show() # After isothermal reaction Stream: s1 phase: 'g', T: 373.15 K, P: 101325 Pa flow (kmol/hr): H2 3 O2 16.5 H2O 1.01e+03 >>> reaction.adiabatic_reaction(s2) >>> s2.show() # After adiabatic reaction Stream: s2 phase: 'g', T: 421.6 K, P: 101325 Pa flow (kmol/hr): H2 3 O2 16.5 H2O 1.01e+03 Adiabatic combustion of H2 and CH4: >>> import thermosteam as tmo >>> chemicals = tmo.Chemicals(['H2', 'CH4', 'O2', 'CO2', 'H2O'], cache=True) >>> tmo.settings.set_thermo(chemicals) >>> reaction = tmo.ParallelReaction([ ... # Reaction definition Reactant Conversion ... tmo.Reaction('2H2 + O2 -> 2H2O', reactant='H2', X=0.7), ... tmo.Reaction('CH4 + O2 -> CO2 + 2H2O', reactant='CH4', X=0.1) ... ]) >>> s1 = tmo.Stream('s1', H2=10, CH4=5, O2=100, H2O=100, T=373.15, phase='g') >>> s2 = tmo.Stream('s2') >>> s1.show() # Before reaction Stream: s1 phase: 'g', T: 373.15 K, P: 101325 Pa flow (kmol/hr): H2 10 CH4 5 O2 100 H2O 100 >>> reaction.show() ParallelReaction (by mol): index stoichiometry reactant X[%] [0] H2 + 0.5 O2 -> H2O H2 70.00 [1] CH4 + O2 -> CO2 + 2 H2O CH4 10.00 >>> reaction.adiabatic_reaction(s1) >>> s1.show() # After adiabatic reaction Stream: s1 phase: 'g', T: 666.38 K, P: 101325 Pa flow (kmol/hr): H2 3 CH4 4.5 O2 96 CO2 0.5 H2O 108 Sequential combustion of CH4 and CO: >>> import thermosteam as tmo >>> chemicals = tmo.Chemicals(['CH4', 'CO','O2', 'CO2', 'H2O'], cache=True) >>> tmo.settings.set_thermo(chemicals) >>> reaction = tmo.SeriesReaction([ ... # Reaction definition Reactant Conversion ... tmo.Reaction('2CH4 + 3O2 -> 2CO + 4H2O', reactant='CH4', X=0.7), ... tmo.Reaction('2CO + O2 -> 2CO2', reactant='CO', X=0.1) ... ]) >>> s1 = tmo.Stream('s1', CH4=5, O2=100, H2O=100, T=373.15, phase='g') >>> s1.show() # Before reaction Stream: s1 phase: 'g', T: 373.15 K, P: 101325 Pa flow (kmol/hr): CH4 5 O2 100 H2O 100 >>> reaction.show() SeriesReaction (by mol): index stoichiometry reactant X[%] [0] CH4 + 1.5 O2 -> CO + 2 H2O CH4 70.00 [1] CO + 0.5 O2 -> CO2 CO 10.00 >>> reaction.adiabatic_reaction(s1) >>> s1.show() # After adiabatic reaction Stream: s1 phase: 'g', T: 650.01 K, P: 101325 Pa flow (kmol/hr): CH4 1.5 CO 3.15 O2 94.6 CO2 0.35 H2O 107 """ if not isinstance(stream, tmo.Stream): raise ValueError(f"stream must be a Stream object, not a '{type(stream).__name__}' object") Hnet = stream.Hnet + Q self(stream) stream.H = Hnet - stream.Hf
def _reaction(self, material_array): material_array += material_array[self._reactant_index] * self.X * self._stoichiometry def _conversion(self, material_array): return material_array[self._reactant_index] * self.X * self._stoichiometry
[docs] def X_net(self, indexer=False): """Return net reaction conversion of reactants as a dictionary or a ChemicalIndexer if indexer is True.""" X_net = {self.reactant: self.X} if indexer: chemicals = self.chemicals data = chemicals.kwarray(X_net) return ChemicalIndexer.from_data(data, NoPhase, chemicals, False) else: return X_net
@property def dH(self): """ Heat of reaction at given conversion. Units are in either J/mol-reactant or J/g-reactant; depending on basis. Warning ------- This property also accounts for: * Latent heats (at 298.15 K) when phases are specified. * The extent of reaction, `X`. * The basis of the reaction (by mol or by wt) """ chemicals = self.chemicals stoichiometry = self._stoichiometry.to_array() phases = self.phases Hfs = chemicals.Hf if phases: H_latent = np.zeros_like(stoichiometry) for i, phase in enumerate(self.phases): for j, chemical in enumerate(chemicals): phase_ref = chemical.phase_ref if phase_ref != phase and stoichiometry[i, j] != 0.: if phase_ref == 'l': if phase == 'g': H_latent[i, j] = chemical.Hvap(298.15) elif phase == 's': H_latent[i, j] = -chemical.Hfus else: raise RuntimeError(f"invalid phase '{phase}'") elif phase_ref == 'g': if phase == 'l': H_latent[i, j] = -chemical.Hvap(298.15) elif phase == 's': H_latent[i, j] = -(chemical.Hvap(298.15) + chemical.Hfus) else: raise RuntimeError(f"invalid phase '{phase}'") elif phase_ref == 's': if phase == 'l': H_latent[i, j] = chemical.Hfus elif phase == 'g': H_latent[i, j] = chemical.Hfus + chemical.Hvap(298.15) else: raise RuntimeError(f"invalid phase '{phase}'") else: raise RuntimeError(f"invalid reference phase '{phase_ref}'") Hfs = Hfs + H_latent if self._basis == 'wt': Hfs = Hfs / self.MWs return self._X * (Hfs * stoichiometry).sum() @property def X(self): """[float] Reaction conversion as a fraction.""" return self._X @X.setter def X(self, X): self._X = float(X) @property def stoichiometry(self): """[sparse array] Stoichiometry coefficients.""" return self._stoichiometry @property def istoichiometry(self): """[ChemicalIndexer] Stoichiometry coefficients.""" stoichiometry = self._stoichiometry if stoichiometry.ndim == 1: return tmo.indexer.ChemicalIndexer.from_data(self._stoichiometry, chemicals=self.chemicals, check_data=False) else: return tmo.indexer.MaterialIndexer.from_data(self._stoichiometry, phases=self._phases, chemicals=self.chemicals, check_data=False) @property def reactant(self): """[str] Reactant associated to conversion.""" if self._phases: phase_index, chemical_index = self._reactant_index return self._phases[phase_index], self.chemicals.IDs[chemical_index] else: return self.chemicals.IDs[self._reactant_index] @property def MWs(self): """[1d array] Molecular weights of all chemicals [g/mol].""" return self.chemicals.MW @property def basis(self): """{'mol', 'wt'} Basis of reaction""" return self._basis @basis.setter def basis(self, basis): set_reaction_basis(self, basis) def _get_stoichiometry_by_wt(self): """Return stoichiometry by weight.""" if self._basis == 'mol': stoichiometry_by_wt = self._stoichiometry * self.MWs else: stoichiometry_by_wt = self._stoichiometry return stoichiometry_by_wt def _get_stoichiometry_by_mol(self): """Return stoichiometry on a molar basis.""" if self._basis == 'wt': stoichiometry_by_mol = self._stoichiometry / self.MWs else: stoichiometry_by_mol = self._stoichiometry return stoichiometry_by_mol
[docs] def mass_balance_error(self): """Return error in stoichiometric mass balance. If positive, mass is being created. If negative, mass is being destroyed.""" stoichiometry_by_wt = self._get_stoichiometry_by_wt() return stoichiometry_by_wt.sum()
[docs] def atomic_balance_error(self): """Return a dictionary of errors in stoichiometric atomic balances. If value is positive, the atom is being created. If negative, the atom is being destroyed.""" stoichiometry_by_mol = self._get_stoichiometry_by_mol() formula_array = self.chemicals.formula_array unbalanced_array = formula_array @ stoichiometry_by_mol return elements.array_to_atoms(unbalanced_array)
[docs] def check_mass_balance(self, tol=1e-3): """Check that stoichiometric mass balance is correct.""" error = self.mass_balance_error() if abs(error) > tol: raise RuntimeError("material stoichiometry is unbalanced by " f"{error} g / mol-reactant")
[docs] def check_atomic_balance(self, tol=1e-3): """Check that stoichiometric atomic balance is correct.""" atoms = self.atomic_balance_error() if abs(sum(atoms.values())) > tol: raise RuntimeError("atomic stoichiometry is unbalanced by the " "following molar stoichiometric coefficients:\n " + "\n ".join([f"{symbol}: {value}" for symbol, value in atoms.items()]) )
[docs] def correct_mass_balance(self, variable=None): """ Make sure mass is not created or destroyed by varying the reactant stoichiometric coefficient. """ if variable: index = self.chemicals.get_index(variable) else: index = self._reactant_index stoichiometry_by_wt = self._get_stoichiometry_by_wt() if self.phases: stoichiometry_by_wt = stoichiometry_by_wt.sum(0) def f(x): stoichiometry_by_wt[index] = x return stoichiometry_by_wt.sum() x = flx.aitken_secant(f, 1) if self._basis == 'mol': x /= self.MWs[index] if self.phases: row = np.where(self._stoichiometry[:, index]) self._stoichiometry[row, index] = x else: self._stoichiometry[index] = x self._rescale()
[docs] def correct_atomic_balance(self, constants=None): """ Correct stoichiometry coefficients to satisfy atomic balance. Parameters ---------- constants : str, optional IDs of chemicals for which stoichiometric coefficients are held constant. Examples -------- Balance glucose fermentation to ethanol: >>> import thermosteam as tmo >>> tmo.settings.set_thermo(['Glucose', 'O2', 'CO2', 'Ethanol', 'CH4', 'Water']) >>> fermentation = tmo.Reaction('Glucose + O2 -> Ethanol + CO2', ... reactant='Glucose', X=0.9) >>> fermentation.correct_atomic_balance() >>> fermentation.show() Reaction (by mol): stoichiometry reactant X[%] Glucose -> 2 CO2 + 2 Ethanol Glucose 90.00 Balance methane combustion: >>> combustion = tmo.Reaction('CH4 + O2 -> Water + CO2', ... reactant='CH4', X=1) >>> combustion.correct_atomic_balance() >>> combustion.show() Reaction (by mol): stoichiometry reactant X[%] 2 O2 + CH4 -> CO2 + 2 Water CH4 100.00 Balance electrolysis of water (with chemical phases specified): >>> electrolysis = tmo.Reaction('H2O,l -> H2,g + O2,g', ... chemicals=tmo.Chemicals(['H2O', 'H2', 'O2']), ... reactant='H2O', X=1) >>> electrolysis.correct_atomic_balance() >>> electrolysis.show() Reaction (by mol): stoichiometry reactant X[%] H2O,l -> H2,g + 0.5 O2,g H2O,l 100.00 Note that if the reaction is underspecified, there are infinite ways to balance the reaction and a runtime error is raised: >>> rxn_underspecified = tmo.Reaction('CH4 + Glucose + O2 -> Water + CO2', ... reactant='CH4', X=1) >>> rxn_underspecified.correct_atomic_balance() Traceback (most recent call last): RuntimeError: reaction stoichiometry is underspecified; pass the `constants` argument to the `<Reaction>.correct_atomic_balance` method to specify which stoichiometric coefficients to hold constant Chemical coefficients can be held constant to prevent this error: >>> rxn_underspecified = tmo.Reaction('CH4 + Glucose + O2 -> Water + CO2', ... reactant='CH4', X=1) >>> rxn_underspecified.correct_atomic_balance(['Glucose', 'CH4']) >>> rxn_underspecified.show() Reaction (by mol): stoichiometry reactant X[%] Glucose + 8 O2 + CH4 -> 7 CO2 + 8 Water CH4 100.00 """ stoichiometry_by_mol = self._get_stoichiometry_by_mol() stoichiometry_by_mol = stoichiometry_by_mol.to_array() phases = self.phases if phases: stoichiometry_by_mol = stoichiometry_by_mol.sum(0) chemicals = self.chemicals if constants: if isinstance(constants, str): constants = [constants] constants = set(constants) constant_index = chemicals.indices(constants) else: constant_index = [self._reactant_index[1] if phases else self._reactant_index] chemical_index, = np.where(stoichiometry_by_mol) chemical_index = np.setdiff1d(chemical_index, constant_index) formula_array = chemicals.formula_array b = - (formula_array[:, constant_index] * stoichiometry_by_mol[constant_index]).sum(1, keepdims=True) atomic_bool_index = np.any(formula_array * stoichiometry_by_mol, axis=1) atomic_index, = np.where(atomic_bool_index) b = b[atomic_index, :] A = formula_array[atomic_index, :][:, chemical_index] M_atoms, N_chemicals = A.shape if M_atoms != N_chemicals: x, _, rank, *_ = np.linalg.lstsq(A, b, rcond=None) if N_chemicals > rank: raise RuntimeError( "reaction stoichiometry is underspecified (i.e. there are " "infinite ways to balance the reaction); pass the " "`constants` argument to the `<Reaction>.correct_atomic_balance` " "method to specify which stoichiometric coefficients to hold constant" ) residual_mass = ((A @ x - b) * self.MWs).sum() if residual_mass > 1e-6: warn(f'atomic balance was solved with a residual mass error of {residual_mass} g / mol of reactant') else: x = np.linalg.solve(A, b) stoichiometry_by_mol[chemical_index] = x.flatten() by_wt = self._basis == 'wt' stoichiometry = stoichiometry_by_mol * self.MWs if by_wt else stoichiometry_by_mol if phases: self._stoichiometry[:] = (self._stoichiometry != 0.) * stoichiometry else: self._stoichiometry[:] = stoichiometry self._rescale()
def _rescale(self): """Scale stoichiometry to a per reactant basis.""" new_scale = -self._stoichiometry[self._reactant_index] if new_scale == 0.: raise RuntimeError(f"reactant '{self.reactant}' does not participate in stoichiometric reaction") self._stoichiometry /= new_scale def to_df(self, index=None): columns = [f'Stoichiometry (by {self._basis})', 'Reactant', 'Conversion [%]'] stoichiometry = get_stoichiometric_string(self.stoichiometry, self.phases, self.chemicals) reactant = self.reactant if self.phases: phase, reactant = reactant reactant += ',' + phase conversion = 100. * self.X df = pd.DataFrame(data=[[stoichiometry, reactant, conversion]], columns=columns, index=[index] if index else None) df.index.name = 'Reaction' return df def __repr__(self): reaction = get_stoichiometric_string(self.stoichiometry, self.phases, self.chemicals) return f"{type(self).__name__}('{reaction}', reactant='{self.reactant}', X={self.X:.3g}, basis={repr(self._basis)})" def _info(self): info = f"{type(self).__name__} (by {self._basis}):" rxn = get_stoichiometric_string(self.stoichiometry, self.phases, self.chemicals) if self.phases: phase, ID = self.reactant cmp = ID + ',' + phase else: cmp = self.reactant lrxn = len(rxn) lcmp = len(cmp) maxrxnlen = max([13, lrxn]) + 2 maxcmplen = max([8, lcmp]) + 2 X = self.X info += "\nstoichiometry" + " "*(maxrxnlen - 13) + "reactant" + " "*(maxcmplen - 8) + ' X[%]' rxn_spaces = " "*(maxrxnlen - lrxn) cmp_spaces = " "*(maxcmplen - lcmp) info += f"\n{rxn}{rxn_spaces}{cmp}{cmp_spaces}{X*100: >6.2f}" return info def show(self): print(self._info()) _ipython_display_ = show
class ReactionItem(Reaction): """ Create a ReactionItem object from the a ReactionSet and reaction index. Parameters ---------- rxnset : ReactionSet index : int Index of reaction. """ __slots__ = ('_index', '_parent') def __init__(self, rxnset, index): self._stoichiometry = rxnset._stoichiometry[index] self._phases = rxnset._phases self._basis = rxnset._basis self._X = rxnset._X self._chemicals = rxnset._chemicals self._reactant_index = rxnset._reactant_index[index] self._index = index self._parent = rxnset def reset_chemicals(self, chemicals): if self._chemicals is chemicals: return parent = self._parent parent.reset_chemicals(chemicals) index = self._index self._stoichiometry = parent._stoichiometry[index] self._reactant_index = parent._reactant_index[index] self._chemicals = chemicals @property def basis(self): """{'mol', 'wt'} Basis of reaction""" return self._basis @basis.setter def basis(self, basis): raise TypeError('cannot change basis of reaction item') def copy(self, basis=None): """Return copy of Reaction object.""" copy = Reaction.__new__(Reaction) copy._basis = self._basis copy._phases = self._phases copy._stoichiometry = self._stoichiometry.copy() copy._reactant_index = self._reactant_index copy._chemicals = self._chemicals copy.chemicals = self.chemicals copy._X = self.X if basis: set_reaction_basis(copy, basis) return copy @property def X(self): """[float] Reaction conversion as a fraction.""" return self._X[self._index] @X.setter def X(self, X): self._X[self._index] = X @chemicals_user class ReactionSet: """ Create a ReactionSet that contains all reactions and conversions as an array. Parameters ---------- reactions : Iterable[Reaction] """ __slots__ = (*Reaction.__slots__, '_parent_index') copy = Reaction.copy phases = MaterialIndexer.phases _get_stoichiometry_by_mol = Reaction._get_stoichiometry_by_mol _get_stoichiometry_by_wt = Reaction._get_stoichiometry_by_wt force_reaction = Reaction.force_reaction adiabatic_reaction = Reaction.adiabatic_reaction reaction_chemicals = Reaction.reaction_chemicals __call__ = Reaction.__call__ def __init__(self, reactions): if not reactions: raise ValueError('no reactions passed') phases_set = set([i.phases for i in reactions]) if len(phases_set) > 1: raise ValueError('all reactions must implement the same phases') self._phases, = phases_set try: chemicals, = {i.chemicals for i in reactions} except: raise ValueError('all reactions must have the same chemicals') self._chemicals = chemicals basis = {i._basis for i in reactions} try: self._basis, = basis except: raise ValueError('all reactions must have the same basis') self._stoichiometry = [i._stoichiometry for i in reactions] self._X = np.array([i.X for i in reactions]) reactant_index = [i._reactant_index for i in reactions] self._reactant_index = tuple(reactant_index) if self._phases else np.array(reactant_index) def equilibrium(self, material, T, P, phase): raise NotImplementedError('equilibrium of reaction sets not implemented in BioSTEAM (yet)') def __iter__(self): for i in range(self._X.size): yield ReactionItem(self, i) def __getitem__(self, index): stoichiometry = self._stoichiometry[index] if stoichiometry.__class__ is list: rxnset = self.__new__(self.__class__) rxnset._basis = self._basis rxnset._phases = self._phases rxnset._stoichiometry = stoichiometry rxnset._X = self._X[index] rxnset._reactant_index = self._reactant_index[index] rxnset._chemicals = self._chemicals rxnset._parent_index = (self, index) return rxnset else: return ReactionItem(self, index) def _rescale(self): """Scale stoichiometry to a per reactant basis.""" stoichiometry = self._stoichiometry for i, index in enumerate(self._reactant_index): row = stoichiometry[i] row /= -row[index] def reset_chemicals(self, chemicals): if chemicals is self._chemicals: return if hasattr(self, '_parent_index'): parent, index = self._parent_index parent.reset_chemicals(chemicals) self._stoichiometry = parent._stoichiometry[index] self._reactant_index = parent._reactant_index[index] self._chemicals = chemicals return phases = self.phases stoichiometry = self._stoichiometry reactants = self.reactants if phases: new_stoichiometry = [] for stoic in stoichiometry: A, B = stoic.shape new_stoic = SparseArray.from_shape([A, chemicals.size]) new_stoichiometry.append(new_stoic) IDs = self.chemicals.IDs for i in range(A): for j in range(B): value = stoic[i, j] if value: new_stoic[i, chemicals.index(IDs[j])] = value reactant_index = [(phases.index(i), chemicals.index(j)) for i, j in reactants] else: A, B = np.array(stoichiometry).shape new_stoichiometry = SparseArray.from_shape([A, chemicals.size]) IDs = self.chemicals.IDs for i in range(A): for j in range(B): value = stoichiometry[i, j] if value: new_stoichiometry[i, chemicals.index(IDs[j])] = value reactant_index = [chemicals.index(i) for i in reactants] self._chemicals = chemicals self._stoichiometry = new_stoichiometry self._reactant_index = reactant_index @property def basis(self): """{'mol', 'wt'} Basis of reaction""" return self._basis @basis.setter def basis(self, basis): raise TypeError('cannot change basis of reaction set') @property def X(self): """[1d array] Reaction conversions.""" return self._X @X.setter def X(self, X): """[1d array] Reaction conversions.""" if X is not self._X: self._X[:] = X @property def stoichiometry(self): """[2d array] Stoichiometry coefficients.""" return self._stoichiometry @property def reactants(self): """tuple[str] Reactants associated to conversion.""" IDs = self.chemicals.IDs phases = self._phases reactant_index = self._reactant_index if phases: return tuple([(phases[i], IDs[j]) for i,j in reactant_index]) else: return tuple([IDs[i] for i in reactant_index]) @property def MWs(self): """[2d array] Molecular weights of all chemicals.""" return self.chemicals.MW[np.newaxis, :] def to_df(self, index=None): columns = [f'Stoichiometry (by {self._basis})', 'Reactant', 'Conversion [%]'] chemicals = self.chemicals phases = self._phases rxns = [get_stoichiometric_string(i, phases, chemicals) for i in self._stoichiometry] cmps = [ID + ',' + phase for phase, ID in self.reactants] if phases else self.reactants Xs = 100. * self.X data = list([i for i in zip(rxns, cmps, Xs) if i[2]]) df = pd.DataFrame(data, columns=columns, index=index if index else None) if isinstance(self, ParallelReaction): df.index.name = 'Parallel reaction' elif isinstance(self, SeriesReaction): df.index.name = 'Reaction in series' return df def __repr__(self): return f"{type(self).__name__}([{', '.join([repr(i).replace('ReactionItem', 'Reaction') for i in self])}])" def _info(self, index_name='index'): info = f"{type(self).__name__} (by {self._basis}):" chemicals = self.chemicals phases = self._phases length = len string = str rxns = [get_stoichiometric_string(i, phases, chemicals) for i in self._stoichiometry] maxrxnlen = max([13, *[length(i) for i in rxns]]) + 2 cmps = [ID + ',' + phase for phase, ID in self.reactants] if phases else self.reactants maxcmplen = max([8, *[length(i) for i in cmps]]) + 2 Xs = self.X N = len(Xs) maxnumspace = max(length(string(N)) + 1, len(index_name)) info += f"\n{index_name}" + " "*(max(2, length(string(N)))) + "stoichiometry" + " "*(maxrxnlen - 13) + "reactant" + " "*(maxcmplen - 8) + ' X[%]' for N, rxn, cmp, X in zip(range(N), rxns, cmps, Xs): rxn_spaces = " "*(maxrxnlen - length(rxn)) cmp_spaces = " "*(maxcmplen - length(cmp)) num = string(N) numspace = (maxnumspace - length(num)) * " " info += f"\n[{N}]{numspace}{rxn}{rxn_spaces}{cmp}{cmp_spaces}{X*100: >6.2f}" return info _ipython_display_ = show = Reaction.show
[docs] class ParallelReaction(ReactionSet): """ Create a ParallelReaction object from Reaction objects. When called, it returns the change in material due to all parallel reactions. Parameters ---------- reactions : Iterable[Reaction] Examples -------- Run two reactions in parallel: >>> import thermosteam as tmo >>> chemicals = tmo.Chemicals(['H2', 'Ethanol', 'CH4', 'O2', 'CO2', 'H2O'], cache=True) >>> tmo.settings.set_thermo(chemicals) >>> kwargs = dict(phases='lg', correct_atomic_balance=True) >>> reaction = tmo.ParallelReaction([ ... # Reaction definition Reactant Conversion ... tmo.Reaction('H2,g + O2,g -> 2H2O,g', reactant='H2', X=0.7, **kwargs), ... tmo.Reaction('Ethanol,l + O2,g -> CO2,g + 2H2O,g', reactant='Ethanol', X=0.1, **kwargs) ... ]) >>> reaction.reactants # Note that reactants are tuples of phase and ID pairs. (('g', 'H2'), ('l', 'Ethanol')) >>> reaction.show() ParallelReaction (by mol): index stoichiometry reactant X[%] [0] H2,g + 0.5 O2,g -> H2O,g H2,g 70.00 [1] 3 O2,g + Ethanol,l -> 2 CO2,g + 3 H2O,g Ethanol,l 10.00 >>> s1 = tmo.MultiStream('s1', T=373.15, ... l=[('Ethanol', 10)], ... g=[('H2', 10), ('CH4', 5), ('O2', 100), ('H2O', 10)]) >>> s1.show() # Before reaction MultiStream: s1 phases: ('g', 'l'), T: 373.15 K, P: 101325 Pa flow (kmol/hr): (g) H2 10 CH4 5 O2 100 H2O 10 (l) Ethanol 10 >>> reaction(s1) >>> s1.show() # After isothermal reaction MultiStream: s1 phases: ('g', 'l'), T: 373.15 K, P: 101325 Pa flow (kmol/hr): (g) H2 3 CH4 5 O2 93.5 CO2 2 H2O 20 (l) Ethanol 9 Reaction items are accessible: >>> reaction[0].show() ReactionItem (by mol): stoichiometry reactant X[%] H2,g + 0.5 O2,g -> H2O,g H2,g 70.00 Note that changing the conversion of a reaction item changes the conversion of its parent reaction set: >>> reaction[0].X = 0.5 >>> reaction.show() ParallelReaction (by mol): index stoichiometry reactant X[%] [0] H2,g + 0.5 O2,g -> H2O,g H2,g 50.00 [1] 3 O2,g + Ethanol,l -> 2 CO2,g + 3 H2O,g Ethanol,l 10.00 Reactions subsets can be made as well: >>> reaction[:1].show() ParallelReaction (by mol): index stoichiometry reactant X[%] [0] H2,g + 0.5 O2,g -> H2O,g H2,g 50.00 Get net reaction conversion of reactants as a material indexer: >>> mi = reaction.X_net(indexer=True) >>> mi.show() MaterialIndexer: (g) H2 0.5 (l) Ethanol 0.1 >>> mi['g', 'H2'] 0.5 If no phases are specified for a reaction set, the `X_net` property returns a ChemicalIndexer: >>> kwargs = dict(correct_atomic_balance=True) >>> reaction = tmo.ParallelReaction([ ... # Reaction definition Reactant Conversion ... tmo.Reaction('H2 + O2 -> 2H2O', reactant='H2', X=0.7, **kwargs), ... tmo.Reaction('Ethanol + O2 -> CO2 + 2H2O', reactant='Ethanol', X=0.1, **kwargs) ... ]) >>> ci = reaction.X_net(indexer=True) >>> ci.show() ChemicalIndexer: H2 0.7 Ethanol 0.1 >>> ci['H2'] 0.7 """ __slots__ = () def __add__(self, other): return self.__class__([i + j for i, j in zip(self, other)]) def _reaction(self, material_array): reacted = self._X * np.array([material_array[i] for i in self._reactant_index], float) for X, stoichiometry in zip(reacted, self._stoichiometry): material_array += X * stoichiometry def _conversion(self, material_array): reacted = self._X * np.array([material_array[i] for i in self._reactant_index], float) conversion = 0 * material_array for X, stoichiometry in zip(reacted, self._stoichiometry): conversion += X * stoichiometry return conversion
[docs] def reduce(self): """ Return a new Parallel reaction object that combines reaction with the same reactant together, reducing the number of reactions. """ rxn_dict = {i: [] for i in set(self._reactant_index)} for i in self: rxn_dict[i._reactant_index].append(i) for key, rxns in rxn_dict.items(): rxn, *rxns = rxns rxn = rxn.copy() for i in rxns: rxn += i rxn_dict[key] = rxn return self.__class__(rxn_dict.values())
[docs] def X_net(self, indexer=False): """Return net reaction conversion of reactants as a dictionary or a ChemicalIndexer if indexer is True.""" X_net = {} for i, j in zip(self.reactants, self.X): if i in X_net: X_net[i] += j else: X_net[i] = j if indexer: chemicals = self.chemicals phases = self.phases if phases: phases = [i[0] for i in X_net] mi = MaterialIndexer(phases=phases, chemicals=chemicals) for i,j in X_net.items(): mi[i] = j return mi else: data = chemicals.kwarray(X_net) return ChemicalIndexer.from_data(data, NoPhase, chemicals, False) else: return X_net
[docs] class SeriesReaction(ReactionSet): """ Create a ParallelReaction object from Reaction objects. When called, it returns the change in material due to all reactions in series. Parameters ---------- reactions : Iterable[Reaction] """ __slots__ = () def reduce(self): raise TypeError('cannot reduce a SeriesReation object, only ' 'ParallelReaction objects are reducible') def _reaction(self, material_array): for i, j, k in zip(self._reactant_index, self.X, self._stoichiometry): material_array += material_array[i] * j * k def _conversion(self, material_array): final = material_array.copy() for i, j, k in zip(self._reactant_index, self.X, self._stoichiometry): final += final[i] * j * k return final - material_array
[docs] def X_net(self, indexer=False): """Return net reaction conversion of reactants as a dictionary or a ChemicalIndexer if indexer is True.""" X_net = {} for i, j in zip(self.reactants, self.X): if i in X_net: X_net[i] += (1 - X_net[i]) * j else: X_net[i] = j if indexer: chemicals = self.chemicals data = chemicals.kwarray(X_net) return ChemicalIndexer.from_data(data, NoPhase, chemicals, False) else: return X_net
[docs] @chemicals_user class ReactionSystem: """ Create a ReactionSystem object that can react a stream across a series of reactions. Parameters ---------- *reactions : Reaction, ParallelReaction, or SeriesReaction All reactions within the reaction system. Examples -------- Create a reaction system for cellulosic fermentation of biomass: >>> from thermosteam import Rxn, RxnSys, PRxn, SRxn, settings, Chemical, Stream >>> cal2joule = 4.184 >>> Glucan = Chemical('Glucan', search_db=False, formula='C6H10O5', Hf=-233200*cal2joule, phase='s', default=True) >>> Glucose = Chemical('Glucose', phase='s') >>> CO2 = Chemical('CO2', phase='g') >>> HMF = Chemical('HMF', search_ID='Hydroxymethylfurfural', phase='l', default=True) >>> Biomass = Glucose.copy(ID='Biomass') >>> settings.set_thermo(['Water', 'Ethanol', 'LacticAcid', HMF, Glucose, Glucan, CO2, Biomass]) >>> saccharification = PRxn([ ... Rxn('Glucan + H2O -> Glucose', reactant='Glucan', X=0.9), ... Rxn('Glucan -> HMF + 2H2O', reactant='Glucan', X=0.025) ... ]) >>> fermentation = SRxn([ ... Rxn('Glucose -> 2LacticAcid', reactant='Glucose', X=0.03), ... Rxn('Glucose -> 2Ethanol + 2CO2', reactant='Glucose', X=0.95), ... ]) >>> cell_growth = Rxn('Glucose -> Biomass', reactant='Glucose', X=1.0) >>> cellulosic_rxnsys = RxnSys(saccharification, fermentation, cell_growth) >>> cellulosic_rxnsys.show() ReactionSystem: [0] ParallelReaction (by mol): index stoichiometry reactant X[%] [0] Water + Glucan -> Glucose Glucan 90.00 [1] Glucan -> 2 Water + HMF Glucan 2.50 [1] SeriesReaction (by mol): index stoichiometry reactant X[%] [0] Glucose -> 2 LacticAcid Glucose 3.00 [1] Glucose -> 2 Ethanol + 2 CO2 Glucose 95.00 [2] Reaction (by mol): stoichiometry reactant X[%] Glucose -> Biomass Glucose 100.00 Compute the flux of glucan through saccharification reactions: >>> feed = Stream('feed', Glucan=1.0, Water=5.0) >>> cellulosic_rxnsys.reactant_flux(feed, index=0) 0.925 Compute the flux of glucan through glucan to glucose saccharification: >>> cellulosic_rxnsys.reactant_flux(feed, index=0, subindex=0) 0.9 Compute the flux of glucose through cell growth: >>> cellulosic_rxnsys.reactant_flux(feed, index=2) 0.04365 Compute the flux of glucose through ethanol production: >>> cellulosic_rxnsys.reactant_flux(feed, index=1, subindex=1) 0.8293 Notice how reacting the stream leads to ethanol production equivalent of 2x the glucose flux to that reaction: >>> cellulosic_rxnsys(feed) >>> feed.show() Stream: feed phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): Water 4.15 Ethanol 1.66 LacticAcid 0.054 HMF 0.025 Glucan 0.075 CO2 1.66 Biomass 0.0437 """ __slots__ = ('_reactions', '_basis', '_chemicals', '_phases') def __init__(self, *reactions, basis=None): if not reactions: raise ValueError('Reactions cannot be empty') self._reactions = reactions try: self._phases, = set([i._phases for i in reactions]) except: raise ValueError('all reactions must have the same phases') try: chemicals, = set([i.chemicals for i in reactions]) except: raise ValueError('all reactions must have the same chemicals') self._chemicals = chemicals try: self._basis, = set([i._basis for i in reactions]) except: raise ValueError('all reactions must have the same basis') force_reaction = Reaction.force_reaction adiabatic_reaction = Reaction.adiabatic_reaction __call__ = Reaction.__call__ show = Reaction.show def equilibrium(self, material, T, P, phase): raise NotImplementedError('equilibrium of reaction systems not implemented in BioSTEAM (yet)') def __iter__(self): return iter(self.reactions) def __getitem__(self, index): return self._reactions[index] @property def X(self): return [i.X for i in self._reactions] @X.setter def X(self, X): for i, j in zip(self._reactions, X): i.X = j @property def reactions(self): return self._reactions def _reaction(self, material): basis = self._basis for i in self._reactions: if i._basis != basis: raise RuntimeError('not all reactions have the same basis') i._reaction(material) def _conversion(self, material): basis = self._basis final = material.copy() for i in self._reactions: if i._basis != basis: raise RuntimeError('not all reactions have the same basis') i._reaction(final) return final - material
[docs] def X_net(self, indexer=False): """Return net reaction conversion of reactants as a dictionary or a ChemicalIndexer if indexer is True.""" X_net = {} for rxn in self._reactions: for i, j in rxn.X_net().items(): if i in X_net: X_net[i] += (1 - X_net[i]) * j else: X_net[i] = j if indexer: chemicals = self.chemicals data = chemicals.kwarray(X_net) return ChemicalIndexer.from_data(data, NoPhase, chemicals, False) else: return X_net
[docs] def reactant_flux(self, material, index, subindex=None): """ Return the amount of reactant being reacted in a reaction. Parameters ---------- material : Stream or array Material entering reaction system. index : int Index of reaction to calculate reactant flux. subindex : int, optional Subindex of reaction to calculate reactant flux. """ values, config, original = as_material_array( material, self._basis, self._phases, self.chemicals ) preconverted_material = values if original else values.copy() reactions = self.reactions for i, rxn in enumerate(reactions): if i == index: break rxn(preconverted_material) reaction = reactions[index] if subindex is not None: if isinstance(reaction, SeriesReaction): reactions = reaction for i, rxn in enumerate(reactions): if i == subindex: break rxn(preconverted_material) reaction = reaction[subindex] return reaction.X * preconverted_material[reaction._reactant_index] elif isinstance(reaction, SeriesReaction): raise ValueError('must pass subindex if the index refers to a SeriesReaction object') elif isinstance(reaction, ParallelReaction): return (reaction.X * preconverted_material[reaction._reactant_index]).sum() else: return reaction.X * preconverted_material[reaction._reactant_index]
def __repr__(self): return f"{type(self).__name__}({', '.join([repr(i) for i in self.reactions])})" def _info(self): indexed_info = f"{type(self).__name__}:" isa = isinstance infos = [(i._info() if isa(i, ReactionSet) else i._info()) for i in self._reactions] N = len(infos) maxnumspace = len(str(N)) + 2 info_dim = '\n' + " " * (maxnumspace + 2) for index, info in enumerate(infos): num = str(index) numspace = (maxnumspace - len(num)) * " " info = info.replace('\n', info_dim) indexed_info += f"\n[{num}]{numspace}{info}" return indexed_info _ipython_display_ = show = Reaction.show
# %% Kinetic reactions (stoichiometric) class KineticConversion: __slots__ = ('reaction', 'stream', 'index') def __init__(self, reaction, stream): self.reaction = reaction self.stream = stream self.index = None def set_chemicals(self, chemicals): self.index = self.stream.chemicals.indices([i.ID for i in chemicals]) def __call__(self, material=None, T=None, P=None, phase=None): if self.index is None: with self.stream.temporary(material, T, P, phase) as stream: return self.reaction.conversion(stream) else: flow = SparseVector.from_size(self.stream.chemicals.size) flow[self.index] = material with self.stream.temporary(flow, T, P, phase) as stream: return self.reaction.conversion(stream)[self.index] @chemicals_user class KineticReaction: """ Create an abstract KineticReaction object which defines a stoichiometric reaction. Child classes must implement a `rate(stream)` method that accepts a stream and returns the reaction rate in kmol/m3/hr and a `volume(stream)` method that accepts the same stream and returns the reactive volume in m3. The units of `volume` need not be m3 so long as it is consistent in both the rate and volume methods. For example, the reaction rate may be given in 1/hr and the volume in kmol. Parameters ---------- reaction : dict or str A dictionary of stoichiometric coefficients or a stoichiometric equation written as: i1 R1 + ... + in Rn -> j1 P1 + ... + jm Pm chemicals : Chemicals, optional Chemicals corresponding to each entry in the stoichiometry array. Defaults to settings.chemicals. Other Parameters ---------------- check_mass_balance=False: bool Whether to check if mass is not created or destroyed. correct_mass_balance=False: bool Whether to make sure mass is not created or destroyed by varying the reactant stoichiometric coefficient. check_atomic_balance=False: bool Whether to check if stoichiometric balance by atoms cancel out. correct_atomic_balance=False: bool Whether to correct the stoichiometry according to the atomic balance. Notes ----- A reaction object can react only a stream object (not an array). """ rate = AbstractMethod volume = AbstractMethod phases = MaterialIndexer.phases __slots__ = ( '_phases', '_thermo', '_stoichiometry', '_reactant_index', ) _basis = 'mol' _X = 1 reactant = Reaction.reactant istoichiometry = Reaction.istoichiometry stoichiometry = Reaction.stoichiometry reaction_chemicals = Reaction.reaction_chemicals reset_chemicals = Reaction.reset_chemicals MWs = Reaction.MWs dH = Reaction.dH _rescale = Reaction._rescale _get_stoichiometry_by_wt = Reaction._get_stoichiometry_by_wt _get_stoichiometry_by_mol = Reaction._get_stoichiometry_by_mol mass_balance_error = Reaction.mass_balance_error atomic_balance_error = Reaction.atomic_balance_error check_mass_balance = Reaction.check_mass_balance check_atomic_balance = Reaction.check_atomic_balance correct_atomic_balance = Reaction.correct_atomic_balance correct_mass_balance = Reaction.correct_mass_balance show = _ipython_display_ = Reaction.show def __init__(self, reaction, chemicals=None, reactant=None, *, phases=None, check_mass_balance=False, check_atomic_balance=False, correct_atomic_balance=False): chemicals = self._load_chemicals(chemicals) if reaction: self._phases = phases = phase_tuple(phases) if phases else xprs.get_phases(reaction) if phases: self._stoichiometry = stoichiometry = xprs.get_stoichiometric_array(reaction, phases, chemicals) if reactant is None: reactant_index = next(iter(stoichiometry.nonzero_keys())) else: reactant_index = chemicals.index(reactant) for phase_index, x in enumerate(stoichiometry[:, reactant_index]): if x: break self._reactant_index = (phase_index, reactant_index) else: self._stoichiometry = stoichiometry = prs.get_stoichiometric_array(reaction, chemicals) if reactant is None: self._reactant_index = next(iter(stoichiometry.nonzero_keys())) else: self._reactant_index = chemicals.index(reactant) if check_mass_balance: self.check_mass_balance() if correct_atomic_balance: self.correct_atomic_balance() elif check_atomic_balance: self.check_atomic_balance() else: self._phases = () self._stoichiometry = SparseVector.from_size(chemicals.size) self._rescale() def conversion_bounds(self, material): stoichiometry = self._stoichiometry conversion = -material / stoichiometry bounds = ( conversion[stoichiometry < 0].min(), # Amount reacted per reactant basis conversion[stoichiometry > 0].max(), # Amount produced per reactant basis ) return bounds def _equilibrium_objective(self, conversion, stream, data): stream.mol += conversion * self._stoichiometry rate = self.rate(stream) stream.set_data(data) return rate def equilibrium(self, stream): initial_condition = stream.get_data() f = self._equilibrium_objective args = (stream, initial_condition) conversion = flx.IQ_interpolation(f, *self.conversion_bounds(stream.imol.data), xtol=1e-16, args=args) return conversion def conversion_handle(self, stream): return KineticConversion(self, stream) def _rate(self, stream): return self.volume(stream) * self.rate(stream) def conversion(self, stream, time=None): if stream.chemicals is not self.chemicals: self.reset_chemicals(stream.chemicals) if time is None and self.volume: # Ideal continuous stirred tank CSTR conversion = self._rate(stream) elif time is None: # Instantaneous reaction conversion = self.equilibrium(stream) else: # Plug flow reaction (PFR) raise NotImplementedError('kinetic integration not yet implemented') return conversion * self._stoichiometry def __call__(self, stream, time=None): if stream.chemicals is not self.chemicals: self.reset_chemicals(stream.chemicals) values = stream.imol.data if time is None and self.volume: # Ideal continuous stirred tank CSTR values += self._rate(stream) * self._stoichiometry elif time is None: # Instantaneous reaction values += self.equilibrium(stream) * self._stoichiometry else: # Plug flow reaction (PFR) raise NotImplementedError('kinetic integration not yet implemented') if tmo.reaction.CHECK_FEASIBILITY: has_negatives = values.has_negatives() if has_negatives: negative_index = values.negative_index() negative_values = values[negative_index] if negative_values.sum() < -1e-12: negative_index = values.negative_keys() chemicals = self.chemicals.tuple IDs = [chemicals[i].ID for i in negative_index] if len(IDs) == 1: IDs = repr(IDs[0]) raise InfeasibleRegion(f'conversion of {IDs} is over 100%; reaction conversion') else: values[negative_index] = 0. else: fn.remove_negligible_negative_values(values) def to_df(self, index=None): columns = ['Stoichiometry (by mol)', 'Reactant'] stoichiometry = get_stoichiometric_string(self.stoichiometry, self.phases, self.chemicals) reactant = self.reactant if self.phases: phase, reactant = reactant reactant += ',' + phase df = pd.DataFrame(data=[[stoichiometry, reactant]], columns=columns, index=[index] if index else None) df.index.name = 'Reaction' return df def __repr__(self): reaction = get_stoichiometric_string(self.stoichiometry, self.phases, self.chemicals) return f"{type(self).__name__}('{reaction}', reactant='{self.reactant}')" def _info(self): info = f"{type(self).__name__} (by mol):" rxn = get_stoichiometric_string(self.stoichiometry, self.phases, self.chemicals) if self.phases: phase, ID = self.reactant cmp = ID + ',' + phase else: cmp = self.reactant lrxn = len(rxn) maxrxnlen = max([13, lrxn]) + 2 info += "\nstoichiometry" + " "*(maxrxnlen - 13) + "reactant" rxn_spaces = " "*(maxrxnlen - lrxn) info += f"\n{rxn}{rxn_spaces}{cmp}" return info # %% Short-hand conventions # Extent of reaction Rxn = Reaction RxnI = ReactionItem RxnS = ReactionSet PRxn = ParallelReaction SRxn = SeriesReaction RxnSys = ReactionSystem # Kinetics KRxn = KineticReaction