Source code for biosteam.units.design_tools.heat_transfer

# -*- coding: utf-8 -*-
# BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules
# Copyright (C) 2020-2023, Yoel Cortes-Pena <yoelcortes@gmail.com>
# 
# This module is under the UIUC open-source license. See 
# github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt
# for license details.
"""
General functional algorithms for the design of heat exchangers.

"""
from numpy import log as ln
from numba import njit

__all__ = ('counter_current_heat_exchange',
           'heuristic_overall_heat_transfer_coefficient',
           'heuristic_pressure_drop',
           'heuristic_tubeside_and_shellside_pressure_drops',
           'order_streams',
           'compute_Fahkeri_LMTD_correction_factor',
           'compute_heat_transfer_area',
           'compute_LMTD')

# %% Functional heat exchanger

def heat_exchange_to_condition(s_in, s_out, T=None, phase=None, 
                               H_lim=None, f_equilibrium=None, heating=None):
    """
    Set the outlet stream condition and return duty required to achieve 
    said condition.
    """
    H_lim_given = H_lim is not None
    H_in = s_in.H
    if H_lim_given:
        if heating:
            if H_in > H_lim: return 0.
        else:
            if H_in < H_lim: return 0.
    if phase:
        s_out.T = T
        s_out.phase = phase
        if H_lim_given:
            if heating:
                if s_out.H > H_lim: s_out.H = H_lim
            else:
                if s_out.H < H_lim: s_out.H = H_lim
    elif len(s_out.vle_chemicals) == 1 and heating is not None:
        bp = s_in.bubble_point_at_P()
        tol = 1e-3
        dT = T - bp.T
        s_out.T = T
        if dT < -tol:
            s_out.phase = 'l'
            if H_lim_given:
                if heating:
                    if s_out.H > H_lim: s_out.H = H_lim
                else:
                    if s_out.H < H_lim: s_out.vle(H=H_lim , P=s_out.P)
        elif dT > tol:
            s_out.phase = 'g'
            if H_lim_given:
                if heating:
                    if s_out.H > H_lim: s_out.vle(H=H_lim , P=s_out.P)
                else:
                    if s_out.H < H_lim: s_out.H = H_lim
        else:
            s_out.phase = 'g' if heating else 'l'
    else:
        s_out.vle(T=T, P=s_out.P)
        if H_lim_given:
            if heating:
                if s_out.H > H_lim: s_out.vle(H=H_lim , P=s_out.P)
            else:
                if s_out.H < H_lim: s_out.vle(H=H_lim , P=s_out.P)
    
    # Sanity check
    if heating:
        assert s_out.T > s_in.T - 0.01, "failed to solve temperature"
        if s_out.T < s_in.T: s_out.T = s_in.T
    else:
        assert s_out.T <= s_in.T + 0.01, "failed to solve temperature"
        if s_out.T > s_in.T: s_out.T = s_in.T
    
    return s_out.H - H_in
    

[docs] def counter_current_heat_exchange(s0_in, s1_in, s0_out, s1_out, dT, T_lim0=None, T_lim1=None, phase0=None, phase1=None, H_lim0=None, H_lim1=None): """ Allow outlet streams to exchange heat until either the given temperature limits or the pinch temperature and return the total heat transfer [Q; in kJ/hr]. """ # Counter current heat exchange setup: # First find the hot inlet, cold inlet, hot outlet and cold outlet streams # along with the maximum temperature approaches for the hotside and the # cold side. if s0_in.T > s1_in.T: s_hot_in = s0_in s_cold_in = s1_in s_hot_out = s0_out s_cold_out = s1_out T_lim_coldside = T_lim0 T_lim_hotside = T_lim1 H_lim_coldside = H_lim0 H_lim_hotside = H_lim1 phase_coldside = phase0 phase_hotside = phase1 else: s_cold_in = s0_in s_hot_in = s1_in s_cold_out = s0_out s_hot_out = s1_out T_lim_hotside = T_lim0 T_lim_coldside = T_lim1 H_lim_hotside = H_lim0 H_lim_coldside = H_lim1 phase_hotside = phase0 phase_coldside = phase1 if (s_hot_in.T - s_cold_in.T) <= dT: return 0. # No heat exchange T_pinch_coldside = s_cold_in.T + dT if T_lim_coldside: if T_lim_coldside > s_hot_in.T: return 0. # No heat exchange else: T_lim_coldside = max(T_pinch_coldside, T_lim_coldside) else: T_lim_coldside = T_pinch_coldside T_pinch_hotside = s_hot_in.T - dT if T_lim_hotside: if T_lim_hotside < s_cold_in.T: return 0. # No heat exchange else: T_lim_hotside = min(T_pinch_hotside, T_lim_hotside) else: T_lim_hotside = T_pinch_hotside # Find which side reaches the pinch first by selecting the side that needs # the least heat transfer to reach the pinch. # Pinch on the cold side Q_hot_stream = heat_exchange_to_condition(s_hot_in, s_hot_out, T_lim_coldside, phase_coldside, H_lim_coldside, heating=False) # Pinch on the hot side Q_cold_stream = heat_exchange_to_condition(s_cold_in, s_cold_out, T_lim_hotside, phase_hotside, H_lim_hotside, heating=True) if Q_hot_stream == Q_cold_stream == 0.: s0_out.copy_like(s0_in) s1_in.copy_like(s1_out) return 0. if Q_hot_stream > 0 or Q_cold_stream < 0: # Sanity check if Q_hot_stream / s_hot_in.C < 0.1 or Q_cold_stream / s_cold_in.C > -0.1: s0_out.copy_like(s0_in) s1_in.copy_like(s1_out) return 0. raise RuntimeError('inlet stream not in vapor-liquid equilibrium') if Q_cold_stream < -Q_hot_stream: # Pinch on the hot side Q = Q_cold_stream if phase_coldside: s_hot_out.H = s_hot_in.H - Q else: s_hot_out.vle(H=s_hot_in.H - Q, P=s_hot_out.P) else: # Pinch on the cold side Q = Q_hot_stream if phase_hotside: s_cold_out.H = s_cold_in.H - Q else: s_cold_out.vle(H=s_cold_in.H - Q, P=s_cold_out.P) return abs(Q)
# %% Heuristics
[docs] def heuristic_overall_heat_transfer_coefficient(ci, hi, co, ho): """ Return a heuristic estimate of the overall heat transfer coefficient [U; in kW/m^2/K]. Assume `U` is 1.0 kW/m^2/K if heat exchange is between a condensing fluid and a vaporizing fluid and 1.0 kW/m^2/K otherwise. Parameters ---------- ci : Stream Cold inlet stream. hi : Stream Hot inlet stream. co : Stream Cold outlet stream. ho : Stream Hot outlet stream. Returns ------- U : float overall heat transfer coefficient [kW/m^2/K]. """ # TODO: Base U on Table 18.5, Warren D. Seider et. al. Product and Process Design Principles. (2016) cip, hip, cop, hop = ci.phase, hi.phase, co.phase, ho.phase phases = cip + hip + cop + hop if 'g' in phases: if ('g' in hip and 'l' in hop) and ('l' in cip and 'g' in cop): return 1.0 else: return 0.5 else: return 0.5
[docs] def heuristic_pressure_drop(inlet_vapor_fraction, outlet_vapor_fraction): """ Return a heuristic estimate of the pressure drop [dP; in psi]. If the fluid changes phase, `dP` is 1.5 psi. If the fluid remains a liquid, `dP` is 5 psi. If the fluid remains a gas, `dP` is 3 psi. Parameters ---------- inlet_vapor_fraction : float outlet_vapor_fraction : float Returns ------- dP : float Pressure drop [psi]. """ if inlet_vapor_fraction != outlet_vapor_fraction: # Latent fluid (boiling or condensing) dP = 1.5 elif inlet_vapor_fraction < 0.5: # Sensible liquid dP = 5. else: # Sensible vapor dP = 3. return dP
[docs] def heuristic_tubeside_and_shellside_pressure_drops(ci, hi, co, ho, tubeside_iscooling=True): """ Return an estimate of tubeside and shellside pressure drops. Parameters ---------- ci : Stream Cold inlet stream. hi : Stream Hot inlet stream. co : Stream Cold outlet stream. ho : Stream Hot outlet stream. tubeside_iscooling : bool True of tubeside fluid is cooling. Returns ------- dP_tube : float Tubeside pressure drop (psi) dP_shell : float Shellside pressure drop (psi) """ dP_c = heuristic_pressure_drop(ci.vapor_fraction, co.vapor_fraction) dP_h = heuristic_pressure_drop(hi.vapor_fraction, ho.vapor_fraction) if tubeside_iscooling: dP_tube = dP_h dP_shell = dP_c else: dP_tube = dP_c dP_shell = dP_h return dP_tube, dP_shell
# %% General functions
[docs] def order_streams(in_a, in_b, out_a, out_b): """ Return cold and hot inlet and outlet streams. Parameters ---------- in_a : Stream Inlet a. in_b : Stream Inlet b. out_a : Stream Outlet a. out_b : Stream Outlet b. Returns ------- ci : Stream Cold inlet. hi : Stream Hot inlet. co : Stream Cold outlet. ho : Stream Hot outlet. """ if in_a.T < in_b.T: return in_a, in_b, out_a, out_b else: return in_b, in_a, out_b, out_a
# %% Computational functions @njit(cache=True) def compute_fallback_Fahkeri_LMTD_correction_factor(P, N_shells): """Return LMTF correction factor using the fallback equation for `compute_Fahkeri_LMTD_correction_factor` when logarithms cannot be computed.""" # A, J, and K are dummy variables A = N_shells - N_shells*P W = A/(A + P) if 0.999 < W < 1.001: Ft = 1 else: J = W/(1. - W) K = (J + 2**-0.5)/(J - 2**-0.5) if K <= 1: Ft = 1 else: Ft = (2**0.5*J)/ln(K) return Ft
[docs] @njit(cache=True) def compute_Fahkeri_LMTD_correction_factor(Tci, Thi, Tco, Tho, N_shells): r""" Return the log-mean temperature difference correction factor `Ft` for a shell-and-tube heat exchanger with one or an even number of tube passes, and a given number of shell passes, with the expression given in [1]_ and also shown in [2]_. .. math:: F_t=\frac{S\ln W}{\ln \frac{1+W-S+SW}{1+W+S-SW}} S = \frac{\sqrt{R^2+1}}{R-1} W = \left(\frac{1-PR}{1-P}\right)^{1/N} R = \frac{T_{in}-T_{out}}{t_{out}-t_{in}} P = \frac{t_{out}-t_{in}}{T_{in}-t_{in}} If R = 1 and logarithms cannot be evaluated: .. math:: W' = \frac{N-NP}{N-NP+P} F_t = \frac{\sqrt{2}\frac{1-W'}{W'}}{\ln\frac{\frac{W'}{1-W'}+\frac{1} {\sqrt{2}}}{\frac{W'}{1-W'}-\frac{1}{\sqrt{2}}}} Parameters ---------- Tci : float Inlet temperature of cold fluid, [K] Thi : float Inlet temperature of hot fluid, [K] Tco : float Outlet temperature of cold fluid, [K] Tho : float Outlet temperature of hot fluid, [K] shells : int, optional Number of shell-side passes, [-] Returns ------- Ft : float Log-mean temperature difference correction factor, [-] Notes ----- This expression is symmetric - the same result is calculated if the cold side values are swapped with the hot side values. It also does not depend on the units of the temperature given. Examples -------- compute_Fahkeri_LMTD_correction_factor(Tci=15, Tco=85, Thi=130, Tho=110, N_shells=1) 0.9438358829645933 References ---------- .. [1] Fakheri, Ahmad. "A General Expression for the Determination of the Log Mean Temperature Correction Factor for Shell and Tube Heat Exchangers." Journal of Heat Transfer 125, no. 3 (May 20, 2003): 527-30. doi:10.1115/1.1571078. .. [2] Hall, Stephen. Rules of Thumb for Chemical Engineers, Fifth Edition. Oxford; Waltham, MA: Butterworth-Heinemann, 2012. """ if (Tco - Tci) < 0.01: R = 1 else: R = (Thi - Tho)/(Tco - Tci) P = (Tco - Tci)/(Thi - Tci) if 0.999 < R < 1.001: Ft = compute_fallback_Fahkeri_LMTD_correction_factor(P, N_shells) else: W = ((1. - P*R)/(1. - P))**(1./N_shells) S = (R*R + 1.)**0.5/(R - 1.) K = (1. + W - S + S*W)/(1. + W + S - S*W) if K <= 0.001 or 0.999 < K < 1.001: Ft = compute_fallback_Fahkeri_LMTD_correction_factor(P, N_shells) else: Ft = S*ln(W)/ln(K) if Ft > 1.0: Ft = 1.0 elif Ft < 0.5: # Bad design, probably a heat exchanger network operating # too close to the pinch. Fahkeri may not be valid, so give # a conservative estimate of the correction factor. Ft = 0.5 return Ft
[docs] @njit(cache=True) def compute_heat_transfer_area(LMTD, U, Q, ft): """ Return required heat transfer area by LMTD correction factor method. Parameters ---------- LMTD : float Log mean temperature difference U : float Heat transfer coefficient Q : float Duty """ return Q/(U*LMTD*ft)
[docs] @njit(cache=True) def compute_LMTD(Thi, Tho, Tci, Tco, counterflow=True): r''' Return the log-mean temperature difference of an ideal counterflow or co-current heat exchanger. .. math:: \Delta T_{LMTD}=\frac{\Delta T_1-\Delta T_2}{\ln(\Delta T_1/\Delta T_2)} \text{For countercurrent: } \\ \Delta T_1=T_{h,i}-T_{c,o}\\ \Delta T_2=T_{h,o}-T_{c,i} \text{Parallel Flow Only:} \\ {\Delta T_1=T_{h,i}-T_{c,i}}\\ {\Delta T_2=T_{h,o}-T_{c,o}} Parameters ---------- Thi : float Inlet temperature of hot fluid [K]. Tho : float Outlet temperature of hot fluid [K]. Tci : float Inlet temperature of cold fluid [K]. Tco : float Outlet temperature of cold fluid [K]. counterflow : bool, optional Whether the exchanger is counterflow or co-current. Returns ------- LMTD : float Log-mean temperature difference [K] Notes ----- Any consistent set of units produces a consistent output. Examples -------- >>> compute_LMTD(100., 60., 30., 40.2) 43.200409294131525 >>> compute_LMTD(100., 60., 30., 40.2, counterflow=False) 39.75251118049003 ''' if counterflow: dTF1 = Thi-Tco dTF2 = Tho-Tci else: dTF1 = Thi-Tci dTF2 = Tho-Tco dTF21 = dTF2 - dTF1 if abs(dTF21) < 1e-8: LMTD = dTF1 else: LMTD = dTF21/ln(dTF2 / dTF1) return LMTD