heat_transfer#
General functional algorithms for the design of heat exchangers.
- counter_current_heat_exchange(s0_in, s1_in, s0_out, s1_out, dT, T_lim0=None, T_lim1=None, phase0=None, phase1=None, H_lim0=None, H_lim1=None)[source]#
Allow outlet streams to exchange heat until either the given temperature limits or the pinch temperature and return the total heat transfer [Q; in kJ/hr].
- heuristic_overall_heat_transfer_coefficient(ci, hi, co, ho)[source]#
Return a heuristic estimate of the overall heat transfer coefficient [U; in kW/m^2/K]. Assume U is 1.0 kW/m^2/K if heat exchange is between a condensing fluid and a vaporizing fluid and 1.0 kW/m^2/K otherwise.
- heuristic_pressure_drop(inlet_vapor_fraction, outlet_vapor_fraction)[source]#
Return a heuristic estimate of the pressure drop [dP; in psi]. If the fluid changes phase, dP is 1.5 psi. If the fluid remains a liquid, dP is 5 psi. If the fluid remains a gas, dP is 3 psi.
- heuristic_tubeside_and_shellside_pressure_drops(ci, hi, co, ho, tubeside_iscooling=True)[source]#
Return an estimate of tubeside and shellside pressure drops.
- Parameters:
- Returns:
dP_tube (float) – Tubeside pressure drop (psi)
dP_shell (float) – Shellside pressure drop (psi)
- compute_Fahkeri_LMTD_correction_factor(Tci, Thi, Tco, Tho, N_shells)[source]#
Return the log-mean temperature difference correction factor Ft for a shell-and-tube heat exchanger with one or an even number of tube passes, and a given number of shell passes, with the expression given in [1] and also shown in [2].
\[ \begin{align}\begin{aligned}F_t=\frac{S\ln W}{\ln \frac{1+W-S+SW}{1+W+S-SW}}\\S = \frac{\sqrt{R^2+1}}{R-1}\\W = \left(\frac{1-PR}{1-P}\right)^{1/N}\\R = \frac{T_{in}-T_{out}}{t_{out}-t_{in}}\\P = \frac{t_{out}-t_{in}}{T_{in}-t_{in}}\end{aligned}\end{align} \]If R = 1 and logarithms cannot be evaluated:
\[ \begin{align}\begin{aligned}W' = \frac{N-NP}{N-NP+P}\\F_t = \frac{\sqrt{2}\frac{1-W'}{W'}}{\ln\frac{\frac{W'}{1-W'}+\frac{1} {\sqrt{2}}}{\frac{W'}{1-W'}-\frac{1}{\sqrt{2}}}}\end{aligned}\end{align} \]- Parameters:
- Returns:
Ft – Log-mean temperature difference correction factor, [-]
- Return type:
Notes
This expression is symmetric - the same result is calculated if the cold side values are swapped with the hot side values. It also does not depend on the units of the temperature given.
Examples
compute_Fahkeri_LMTD_correction_factor(Tci=15, Tco=85, Thi=130, Tho=110, N_shells=1) 0.9438358829645933
References
- compute_heat_transfer_area(LMTD, U, Q, ft)[source]#
Return required heat transfer area by LMTD correction factor method.
- compute_LMTD(Thi, Tho, Tci, Tco, counterflow=True)[source]#
Return the log-mean temperature difference of an ideal counterflow or co-current heat exchanger.
\[ \begin{align}\begin{aligned}\Delta T_{LMTD}=\frac{\Delta T_1-\Delta T_2}{\ln(\Delta T_1/\Delta T_2)}\\\begin{split}\text{For countercurrent: } \\ \Delta T_1=T_{h,i}-T_{c,o}\\ \Delta T_2=T_{h,o}-T_{c,i}\end{split}\\\begin{split}\text{Parallel Flow Only:} \\ {\Delta T_1=T_{h,i}-T_{c,i}}\\ {\Delta T_2=T_{h,o}-T_{c,o}}\end{split}\end{aligned}\end{align} \]- Parameters:
- Returns:
LMTD – Log-mean temperature difference [K]
- Return type:
Notes
Any consistent set of units produces a consistent output.
Examples
>>> compute_LMTD(100., 60., 30., 40.2) 43.200409294131525 >>> compute_LMTD(100., 60., 30., 40.2, counterflow=False) 39.75251118049003